
Checking 𝛿-Satisfiability of Reals with Integrals

CODY RIVERA, University of Illinois at Urbana-Champaign, USA

BISHNU BHUSAL, University of Missouri, USA

ROHIT CHADHA, University of Missouri, USA

A. PRASAD SISTLA, University of Illinois at Chicago, USA and Discovery Partners Institute, USA

MAHESH VISWANATHAN, University of Illinois at Urbana-Champaign, USA

Many synthesis and verification problems can be reduced to determining the truth of formulas over the

real numbers. These formulas often involve constraints with integrals in them. To this end, we extend the

framework of 𝛿-decision procedures with techniques for handling integrals of user-specified real functions.

We implement this decision procedure in the tool

∫
dReal, which is built on top of dReal. We evaluate

∫
dReal

on a suite of problems that include formulas verifying the fairness of algorithms and the privacy and the utility

of privacy mechanisms and formulas that synthesize parameters for the desired utility of privacy mechanisms.

The performance of the tool in these experiments demonstrates the effectiveness of

∫
dReal.

CCS Concepts: • Theory of computation→ Logic and verification; • Security and privacy→ Logic
and verification; • Mathematics of computing→ Integral equations; • Software and its engineering
→Model checking.

Additional Key Words and Phrases: 𝛿-satisfiability, theory of reals, integrals, verification, synthesis.

ACM Reference Format:
Cody Rivera, Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. 2025. Checking 𝛿-

Satisfiability of Reals with Integrals. Proc. ACM Program. Lang. 9, OOPSLA1, Article 105 (April 2025), 29 pages.
https://doi.org/10.1145/3720446

1 Introduction
Verification of systems and synthesis of parameters/programs can often be reduced to the problem of

determining the truth of first order logic sentences over fixed structures. For application domains like

probabilistic programming, machine learning, cyberphysical systems, or security and privacy of data

processing, the resulting formulas require reasoning about real numbers. Moreover, the formulas

often involve exponentials, trignometric and hyperbolic functions, and integrals of probability

density functions involving exponentials. Often expressions involving integrals, like the cumulative

distribution function of a Gaussian/Normal distribution, do not even have closed form expressions.

The decidability of the first order theory of reals with functions such as exponentials is a long

standing open problem at the interface of logic and transcendental number theory. However, it

turns out that such sentences and those involving other more complicated functions and integrals

can be “approximately” decided [11]. Such approximate decision procedures are called 𝛿-decision

procedures and they have the following properties. Given a sentence 𝜑 over the reals where all

Authors’ Contact Information: Cody Rivera, University of Illinois at Urbana-Champaign, Urbana, USA, codyjr3@illinois.edu;

Bishnu Bhusal, University of Missouri, Columbia, USA, bhusalb@mail.missouri.edu; Rohit Chadha, University of Missouri,

Columbia, USA, chadhar@missouri.edu; A. Prasad Sistla, University of Illinois at Chicago, Chicago, USA and Discovery

Partners Institute, Chicago, USA, sistla@uic.edu; Mahesh Viswanathan, University of Illinois at Urbana-Champaign, Urbana,

USA, vmahesh@illinois.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/4-ART105

https://doi.org/10.1145/3720446

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

HTTPS://ORCID.ORG/0000-0001-7824-4054
HTTPS://ORCID.ORG/0000-0001-7522-5878
HTTPS://ORCID.ORG/0000-0002-1674-1650
HTTPS://ORCID.ORG/0009-0005-8331-7912
HTTPS://ORCID.ORG/0000-0001-7977-0080
https://doi.org/10.1145/3720446
https://orcid.org/0000-0001-7824-4054
https://orcid.org/0000-0001-7522-5878
https://orcid.org/0000-0002-1674-1650
https://orcid.org/0009-0005-8331-7912
https://orcid.org/0000-0001-7977-0080
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3720446

105:2 Cody Rivera, Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

quantified variables are restricted to take values in a closed interval, and a parameter 𝛿 > 0, we

construct another sentence called the “𝛿-weakening” 𝜑𝛿
of 𝜑 . Intuitively, 𝜑𝛿

is a formula obtained

by perturbing the constants in 𝜑 by 𝛿. On input 𝜑 , a 𝛿-decision procedure either answers “unsat”

to indicate that 𝜑 is not true over the reals, or “𝛿-sat” to indicate that 𝜑𝛿
is true. It thus solves

the decision problem approximately in the following sense — if 𝜑 is true, then the procedure is

guaranteed to answer “𝛿-sat”; if both 𝜑 and 𝜑𝛿
are not true then the procedure is guaranteed to

answer “unsat”; but when 𝜑 is not true and 𝜑𝛿
is true, the procedure may give either answer without

violating its promise.

The framework of 𝛿-decision procedures has been incredibly effective in analyzing a variety of

systems [4, 28]. dReal [12] is a robust implementation of these algorithms for special formulas that

arise in the verification of cyberphysical systems. In cyberphysical systems, the system state is

often described by a set of differential equations where the derivative is with respect to time, and

verification involves reasoning about the state as it evolves over time. Hence, dReal assumes that

all derivatives are with respect to a common variable (time) and there is no support for integrals

over different variables (nested or otherwise). These restrictions pose significant roadblocks when

analyzing probabilistic programs, privacy mechanisms, or machine learning algorithms.

1.1 Contributions
In this paper, we introduce a logic that we call L𝑖𝑛𝑡 over reals in which formulas can be built

using exponentials, logarithms, trigonometric and hyperbolic functions, and integrals. Integrals

in the logic are treated as first class objects, and formulas can involve integrals of expressions

over multiple variables. The logic allows terms involving nested integrals. Moreover, expressions

involving integrals need not have closed-form expressions.We show that the 𝛿-satisfiability problem

for such logic is decidable, and we present a 𝛿-decision procedure based on Interval Constraint

Propagation (ICP) for L𝑖𝑛𝑡 .

We have implemented the algorithm in a tool called

∫
dReal (read “integral dee real”) which

extends dReal. The key ingredient in dReal is Interval Constraint Propagation (ICP) [5], which
attempts to find a sufficiently small box — a tuple of intervals, one for each existentially-quantified

variables — that satisfies a given set of atomic real constraints [5]. The algorithm works via a

“branch-and-prune” procedure, where pruning tries to shrink this box according to the properties

of the constraints themselves, and if pruning does not work, branching divides the box into two

smaller subboxes, and generates a subproblem for each subbox.

Extending ICP to handle integration as implemented in

∫
dReal involves the following key

innovations and engineering: (a) Developing forward and backward pruning algorithms for integral

expressions, and (b) Integrating Arb [16], a library which provides arbitrary precision support for

integration, into IBEX [15], the library dReal uses to implement interval constraint propagation.

In developing pruning algorithms for integral expressions, we found that, although we can use a

straightforward algorithm for forward pruning, the backward pruning algorithm required some

engineering trade-offs. In particular, we do not perform backward pruning if the box to be pruned

is too wide. We demonstrate that the resulting pruning procedure satisfies all the “good” properties

required for the ICP algorithm.

We mention some salient points regarding the engineering challenges of extending dReal’s ICP

library, IBEX, to handle integrals using Arb, and our solutions to those. A core operation used in ICP

is to compute an interval enclosure for a function 𝑓 over Reals containing all possible outputs, given

intervals containing all possible inputs. IBEX implements this operation by first converting 𝑓 into

an expression graph, and then traversing the graph and computing an interval enclosure for each

subexpression. We add support for integral subexpressions by extending the expression graph data

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

Checking 𝛿-Satisfiability of Reals with Integrals 105:3

structure to handle such subexpressions and use Arb to produce ball enclosures (sets represented

by a midpoint and a radius, see Section 5.1 for more details) containing all of their possible outputs.

When an integral is encountered, we first compute enclosures around the limits, and then invoke

Arb to compute the integral. The auxiliary function provided allows Arb to compute the values of

the integrand at particular points by evaluating an arbitrary IBEX expression graph. We implement

this in a way that allows integrals to be nested arbitrarily.

We believe that the value in adding support for terms with integration is its application in a range

of examples, to be described shortly. Additionally, a few of our examples contain ∃-∀ quantifier
alternation, and we are unaware of any tool that checks the satisfiability of formulas with these

features together. We leave addition of other operations such as differentiation to future work. But

adding this support would require care: for example, |𝑥 | is not differentiable at zero.
We demonstrate the effectiveness of our algorithm and tool by studying its performance on a

number of examples drawn from probabilistic programming, security, and machine learning, as well

as artificially created formulas. We compare its running time against the state of the art industrial

tool Mathematica
®

, and show that on several examples we get at least a 2X speedup; we do not

compare against dReal because it cannot handle the examples we study. Mathematica
®

and

∫
dReal

is not a like-for-like comparison — the former attempts to solve the precise satisfiability problem

while the latter is an approximate decision procedure. However, Mathematica
®

is the only tool

(exact or otherwise) we are aware of that is capable of handling the formulas with integrals that we

consider in our experiments. In our experiments, we found that, even though

∫
dReal implements a

𝛿-decision procedure, its answers are almost always correct with respect to the exact satisfiability

problem. The speedup (with respect to Mathematica
®

) reported in our experiments should be

interpreted as evidence that suggests that 𝛿-decision procedures can be useful as they show that

even a prototype tool can be as effective as a mature, heavily engineered industry standard.

We highlight a few observations regarding the case studies used in our benchmarks. These case

studies involve verifying fairness claims of decision trees, and privacy and accuracy claims of

differential privacy. Our first observation is that the formulas generated demonstrate the need

for nested integrals and integrals whose limits may be real expressions (and not just constants).

Secondly, we show that our methods can be used to perform a more involved analysis. We highlight

two such instances. We consider the fairness of a machine-learning model (See Section 2.1). This

example is adapted from FairSquare [2]. FairSquare checks for the fairness of the model, assuming

a fixed population model. We show that our tool allows us to verify fairness claims even if the

parameters are not known to a certainty, but belong to a range. In another instance, we show how

our methods can synthesize privacy algorithm parameters to obtain the desired accuracy/utility

(See Section 2.2).

1.2 Outline of the Paper
The rest of the paper is organized as follows. We conclude this section with a short discussion of

closely related work. In Section 2, we present some example verification and synthesis problems

that motivate the need for tools that can check the satisfiability of first order formulas over reals

that involve integrals. Section 3 formally introduces the problem of 𝛿-satisfiability and provides

an overview of interval constraint propagation (ICP), the framework on which our algorithm

is based. Our logic L𝑖𝑛𝑡 is formally introduced in Section 4. Our 𝛿-decision procedure is also

presented in Section 4. Section 5 discusses the implementation of our algorithm in the tool

∫
dReal.

Some examples used in our experiments are presented in Section 6, and this is followed by our

experimental results in Section 7.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

105:4 Cody Rivera, Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

1.3 Related Work
The verification of hybrid systems can naturally be reduced to the satisfiability question of first

order logic over reals. Hybrid systems describe the discrete and continuous behavior where real-

valued variables evolve continuously with time, and periodically, there are mode changes that

influence the physical laws governing the evolution of the real-valued variables. The continuous

dynamics of such systems are often described using ODEs, and checking the safety or reachability

of such systems involves solving ODEs. Over the years, a number of tools and approaches have been

proposed to handle the first order logic formulas that arise from the safety verification problem

of hybrid systems. HSolver [22] checks the satisfiability of formulas arising from hybrid system

verification using interval abstraction and progressive refinement. iSAT-ODE [10] checks formulas

involving ODEs using an enclosure method for ODEs and monotonicity. Finally, dReach [19] is a

tool that analyzes safety for hybrid systems by encoding the hybrid system reachability problem as

a first order formula over reals and then calling dReal. Though all these tools present algorithms to

check the satisfiability of formulas where some terms are integrals since they target hybrid systems,

the integrations in the formulas are over only one variable (time) and, therefore, are not nested.

The integrals also do not have expressions as bounds; all integral bounds are numbers. Further,

HSolver and iSAT-ODE only handle polynomials and do not have any transcendental functions like

exponentials or trigonometric functions. Because of these restrictions, none of these approaches

can handle the class of formulas we consider in this paper.

2 Motivating Examples
Verification of systems and synthesis of parameters/programs can often be reduced to the problem

of determining the truth of first-order logic sentences over fixed structures. In many applications,

the fixed structure turns out to be real numbers. We present a couple of motivating examples

that demonstrate the need for algorithms that can reason about formulas involving complicated

integrations. Programs in our examples will sample from the Gaussian (or Normal) distribution,

which we write asN(𝜇, 𝜎), where 𝜇 and 𝜎 represent the mean and standard deviation respectively.

Recall that the probability density function of the Gaussian distribution is given by the function

(1)𝑓 (𝑥) =

1

𝜎
√

2𝜋
𝑒−

1

2
(
𝑥−𝜇
𝜎)

2

.

Before presenting the examples, we introduce another piece of notation that we use. For events 𝑎

and 𝑏, IP[𝑎] denotes the probability of the event 𝑎, and IP[𝑎 |𝑏] denotes the conditional probability

of 𝑎 given 𝑏.

2.1 Verification of Fairness Properties
We present a simplified case study adapted from FairSquare [2]. Consider the program dec shown
in Figure 1 on the right. dec is a program that makes a hiring decision based on a job applicant’s

college ranking (colRank) and years of experience (yExp). The goal of the program is to ensure

fairness in hiring decisions. The core of the program’s decision-making process is a decision tree,

potentially derived through machine learning. An applicant is deemed suitable for hire if they

either attended a top-5 college (colRank <= 5) or possess substantial experience relative to their

college’s ranking (expRank > -5). Importantly, the program dec does not factor ethnicity in its

decision-making process.

A probabilistic model representing a basic population model is given as program popModel
shown on the left in Figure 1. Each member of the population possesses three real-valued attributes:

ethnicity, colRank, and yExp. The sensitive condition defines a member as part of a protected

group if their ethnicity value exceeds 10 (ethnicity > 10) and increases the colRank by 5. The

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

Checking 𝛿-Satisfiability of Reals with Integrals 105:5

1 define popModel(𝜇𝑐, 𝜎𝑐)
2 ethnicity ~ N(0,10)
3 colRank ~ N(𝜇𝑐, 𝜎𝑐)
4 yExp ~ N(10,5)
5 if (ethnicity > 10)
6 colRank ← colRank + 5
7 return colRank, yExp

1 define dec(colRank, yExp)
2 expRank ← 5*yExp - colRank
3 if (colRank <= 5)
4 hire ← true
5 elif (expRank > -5)
6 hire ← true
7 else
8 hire ← false
9 return hire

Fig. 1. On the left, a program for generating a population model. On the right is a program for decision-making
in hiring an employee.

population model intuitively offers a probabilistic representation of the population, serving as the

source from which inputs for the program dec are drawn. In our illustrative scenario, popModel
is parameterized by 𝜇𝑐 and 𝜎𝑐 representing the mean and standard deviation, respectively, of the

distribution for colRank.
Our goal is to check that dec does not discriminate against the protected group. Informally, this

means that the probability of hiring someone from the protected group is not much lower than

the probability of hiring someone not from the protected group. This is formally captured by the

following condition.

(2)IP[hire|ethnicity > 10] > (1 − 𝜖)IP[hire|ethnicity ≤ 10]

In this context, 𝜖 represents a small constant. The left and right-hand sides of (2) can be written as

follows (here the random variables ethnicity, yExp and colRank correspond to the values of the

variables ethnicity, yExp and colRank at end of line 4 in the population model given in Figure 1).

(3)IP[hire|ethnicity > 10]=IP[colRank < 0] + IP[yExp > colRank
5

and colRank > 0]

(4)IP[hire|ethnicity ≤ 10]=IP[colRank < 5] + IP[yExp >
(colRank−5)

5
and colRank > 5]

Thus, in the inequality (2), we replace the conditional probabilities with the sums of uncondi-

tional probabilities as given by equations (3) and (4). In the resulting inequality, we replace the

unconditional probabilities with probability expressions involving integrals over the appropriate

Gaussian density functions, given by (1), to obtain the following inequality.

(5)

1

𝜎𝑐
√

2𝜋

[∫
0

−∞ 𝑒
−(𝑥−𝜇𝑐)

2

2𝜎𝑐
2 𝑑𝑥 +

∫∞
0

∫∞
𝑥
5

1

5

√
2𝜋
𝑒
−(𝑦−10)

2

50 𝑒
−(𝑥−𝜇𝑐)

2

2𝜎𝑐
2 𝑑𝑦𝑑𝑥

]
> (1 − 𝜖)

1

𝜎𝑐
√

2𝜋

[∫
5

−∞ 𝑒
−(𝑥−𝜇𝑐)

2

2𝜎𝑐
2 𝑑𝑥 +

∫∞
5

∫∞
𝑥−5

5

1

5

√
2𝜋
𝑒
−(𝑦−10)

2

50 𝑒
−(𝑥−𝜇𝑐)

2

2𝜎𝑐
2 𝑑𝑦𝑑𝑥

]
In the above inequality, the first and second summands on the left hand side, correspond to

IP[colRank < 0] and IP[yExp > colRank
5

and colRank > 0], respectively; similarly the first

and second summands on the right hand side, correspond to IP[colRank < 5] and IP[yExp >
(colRank−5)

5
and colRank > 5], respectively. It is worth noting that the condition for checking

fairness involves exponentials, integrals, nested integrals, and integral bounds that are not only

from the extended reals but could also be expressions with variables.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

105:6 Cody Rivera, Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

𝛿-decision procedures rely on variables and integration bounds being bounded. Thus, we would

like to replace the ∞ and −∞ in the upper and lower bounds in equation (5) with appropriately

chosen finite values. Since integrals involving these bounds correspond to terms arising from the

Gaussian distribution, we can use Gaussian tail bounds for this purpose. For example, we can use

the concentration bound

(6)IP[|𝑋 − 𝜇 |≥ 𝑡] ≤ 2𝑒
− 𝑡2

2𝜎2

where 𝑋 is a Gaussian random variable with mean 𝜇 and standard deviation 𝜎. colRank has mean

and standard deviation 𝜇𝑐 and 𝜎𝑐 , respectively. When we replace the lower limit of −∞ and upper

limit of∞, of the integral over this random variable, by 𝜇𝑐 − 𝑘 and by 𝜇𝑐 + 𝑘 , respectively, we get a

tail error bound 𝜉 , given below.

(7)𝜉 ∼ 2𝑒
− 𝑘2

2𝜎𝑐
2

When we consider 𝑘 to be 4𝜎𝑐 , 𝜉 becomes approximately
7

10000
.

Next, observe that for the random variable yExp, the mean is 10 and standard deviation is 5. We

also replace the lower limit of −∞ and upper limit of∞, of integrals over this random variable by

10 − 𝑘 and 10 + 𝑘 . For 𝜎𝑐 ≥ 5, the error bound for integrals over this random variable is no more

than 𝜉 .

Using these Gaussian tail bounds, we replace∞ and −∞ bounds in (5) by finite values. Our goal

is to identify a new condition, which if it holds would imply the satisfaction of (5). To accomplish

this, we ignore the error bounds that arise when the left hand side of the inequality is modified, and

we simply add an appropriate error bound on the right hand side; in this case this error on the right

side turns out to be at most 2𝜉 . Based on these observations, we get the following new condition.

(8)

𝜙 ::=

[
1

𝜎𝑐
√

2𝜋

[∫
0

𝜇𝑐−𝑘
𝑒
−(𝑥−𝜇𝑐)

2

2𝜎𝑐
2 𝑑𝑥 +

∫𝜇𝑐+𝑘

0

∫
10+𝑘
𝑥
5

1

5

√
2𝜋
𝑒
−(𝑦−10)

2

50 𝑒
−(𝑥−𝜇𝑐)

2

2𝜎𝑐
2 𝑑𝑦𝑑𝑥

]
>

(1 − 𝜖)
1

𝜎𝑐
√

2𝜋

[∫
5

𝜇𝑐−𝑘
𝑒
−(𝑥−𝜇𝑐)

2

2𝜎𝑐
2 𝑑𝑥 +

∫𝜇𝑐+𝑘

5

∫
10+𝑘
𝑥−5

5

1

5

√
2𝜋
𝑒
−(𝑦−10)

2

50 𝑒
−(𝑥−𝜇𝑐)

2

2𝜎𝑐
2 𝑑𝑦𝑑𝑥 + 2𝜉

]]
It is easy to see that if (8) holds then (5) also holds. This is what we desire. Note that the previous

calculations must be performed by the user and are not automatically performed by

∫
dReal.

Verifying the fairness of dec with respect to the population model popModel is done by running

satisfiability queries based on 𝜙 in equation (8). One verification problem is to check if 𝜙 holds for

specific values of 𝜇𝑐 and 𝜎𝑐 . The second verification problem is to check that 𝜙 holds for all values

of 𝜇𝑐 and 𝜎𝑐 that lie in a prescribed range, i.e., dec is unfair for all values of 𝜇𝑐 and 𝜎𝑐 that lie in

some range. Our 𝛿-decision procedure can handle such queries. In our experiments, to establish

validity and thus fairness, we check that the negated 𝜙 is unsatisfiable. Specifically, we consider

(1) (eth_colrank_fair_00): For 𝜖 = 0.1, 𝜇𝑐 = 25, 𝜎𝑐 = 10, check if ¬𝜙 is unsatisfiable.

(2) (eth_colrank_fair_01): For 𝜖 = 0.1, check if ∃𝜇𝑐 ∈ [20, 30]. ∃𝜎𝑐 ∈ [10, 15]. ¬𝜙 is unsatisfiable.

In the experiments, we replace 𝜇𝑐 − 𝑘 in lower limits by its lowest possible value, 20 − 4 ∗ 15,

and 𝜇𝑐 + 𝑘 by its highest possible value 30 + 4 ∗ 15.

The verification problem described by (eth_colrank_fair_00) has been checked before in [2]. How-

ever, more complicated queries, like checking fairness for a range as expressed by (eth_colrank_fair-

_01), have not. Our tool is able to handle such formulas.

2.2 Synthesis of Parameters for Accuracy of a Privacy Mechanism
Given a threshold threshold, and a sequence of numbers, suppose we are interested in determining

the first position in the sequence of numbers that exceeds threshold. One program accomplishing

this task may output ⊥ each time the number read is less than threshold, and output ⊤ and

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

Checking 𝛿-Satisfiability of Reals with Integrals 105:7

halt when the first number exceeding threshold is encountered. Suppose we want to solve this

problem in a manner that ensures the privacy of the numbers read, what should we do? Sparse

Vector Technique (SVT) [3, 8, 21] is an algorithm that solves this problem while ensuring differential

privacy. The idea behind this algorithm is simple. Instead of comparing the read input with the

threshold, it compares a noisy version of the input against a noisy version of threshold. But how
much noise should we add? Clearly, if we add a lot of noise, privacy can be easily guaranteed since

the output of the algorithm may have little correlation with the true answer. The key is to add just

enough noise so that privacy can be guaranteed, while at the same time answers can be “accurate”.

This turns out to be a subtle problem and there are many examples of proposed algorithms that

have been shown to be incorrect [21].

The problem of identifying the right amount of noise in SVT is a synthesis problem and one can

reduce it to the satisfaction of a first order formula. For simplicity, let us consider SVT for the case
when the input sequence is of length 1. The algorithm adds Gaussian noise, controlled by privacy

budget 𝜖 and the parameter 𝑎, to both the threshold and the input, compares them and outputs ⊤ is

the noisy input is larger than the noisy threshold and outputs ⊥ otherwise. This is shown on the

left in Figure 2.

1 define SVT(input)
2 noisy_th ~ N(threshold, 1

𝑎𝜖
)

3 noisy_input ~ N(input, 1

(1−𝑎)𝜖
)

4 if (noisy_input ≥ noisy_th)
5 return ⊤
6 else
7 return ⊥

1 define detSVT(input)
2 if (input ≥ threshold)
3 return ⊤
4 else
5 return ⊥

Fig. 2. On the left Sparse Vector Technique (SVT). On the right deterministic variant of the SVT

In order to say if this algorithm outputs “useful”, “correct” results, we need to compare its output

with that of a program that solves the original problem without attempting to ensure privacy. In

other words, compare it with the algorithm that does not add any noise during its execution. We

call this later algorithm detSVT and it is shown on the right in Figure 2.

In this simple case of 1-input SVT, accuracy of SVT on input (U) is measured by

𝛾 (U) ::= IP[SVT(U) = detSVT(U)] (9)

Suppose threshold is 0 and the input (U) is 1, then detSVT outputs ⊤, i.e. detSVT(1) = ⊤. Hence
𝛾 (1) = IP[SVT(1) = ⊤]. Using standard probability analysis, it is easy to see that 𝛾 (1) is given by the

following equation.

𝛾 (1) ::=

𝑎(1 − 𝑎)𝜖2

2𝜋

∫∞
−∞

∫∞
𝑥

𝑒−
𝑎2𝜖2𝑥2

2 𝑒−
(1−𝑎)

2𝜖2
(𝑦−1)

2

2 𝑑𝑦𝑑𝑥 (10)

Now, we outline a simple method to check if 𝛾 (1) > 0.5 using

∫
dReal. To do this, we chose a

constant 𝑘 > 0 and replace limits −∞ and∞ of the integrals in the expression for 𝛾 (1) by −𝑘 and 𝑘 ,

respectively. Let the resulting expression be denoted by 𝛾 ′(1), i.e.,

𝛾 ′(1) ::=

𝑎(1 − 𝑎)𝜖2

2𝜋

∫𝑘

−𝑘

∫𝑘

𝑥

𝑒−
𝑎2𝜖2𝑥2

2 𝑒−
(1−𝑎)

2𝜖2
(𝑦−1)

2

2 𝑑𝑦𝑑𝑥 (11)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

105:8 Cody Rivera, Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

Clearly 𝛾 ′(1) < 𝛾 (1). Hence if 𝛾 ′(1) > 0.5 then 𝛾 (1) > 0.5. We can check the former condition using∫
dReal. Consider a small constant 𝛿 > 0 and check if 𝛾 ′(1) − 0.5 − 𝛿 > 0 is 𝛿−satisfiable. We do

this by passing 𝛿 as the parameter to

∫
dReal. If the tool says that it is 𝛿-satisfiable, then it means

−𝛿 < 𝛾 ′(1) − 0.5 − 𝛿 < 𝛿. This implies that 𝛾 ′(1) > 0.5. In this procedure, we fix the parameters 𝑎, 𝜖

and 𝑘.

Now, we outline a procedure for synthesizing a value for parameter 𝑎 so that 𝛾 ′(1) > 0.5 (and

hence 𝛾 (1) > 0.5), for all values of 𝜖 in a given range. For this, consider the formula 𝜙(𝑎, 𝜖, 𝛿, 𝑘) as

given below.

𝜙(𝑎, 𝜖, 𝛿, 𝑘) ::=

𝑎(1 − 𝑎)𝜖2

2𝜋

∫𝑘

−𝑘

∫𝑘

𝑥

𝑒−
𝑎2𝜖2𝑥2

2 𝑒−
(1−𝑎)

2𝜖2
(𝑦−1)

2

2 𝑑𝑦𝑑𝑥 − 0.5 − 𝛿 > 0 (12)

Now, we construct a ∃-∀ query where ∃ quantifies over the parameter 𝑎 and ∀ quantifies over
the parameter 𝜖. The required query denoted as gauss_forall_00 is given below:

∃𝑎 ∈ [0.25, 0.75],∀𝜖 ∈ [0.5, 0.9], 𝜙(𝑎, 𝜖, 𝛿, 𝑘).

The query is run in

∫
dReal, using a constant 𝛿 which is also passed as the parameter for 𝛿-

satisfiability to the tool. We also use a constant 𝑘 , which much be sufficiently large to ensure

𝛾 ′(1) > 0.5; here we set 𝑘 = 20. The tool answered saying the above formula is 𝛿-satisfiable; and

returned a small interval strictly contained in the interval [0.25, 0.75] centered around the point 0.5

indicating that for some value of 𝑎 within the small interval, 𝛾 (1) > 0.5 for all values of 𝜖 ∈ [0.5, 0.9].

We then checked whether the formula ∃𝜖 ∈ [0.5, 0.9],¬𝜙(𝑎, 𝜖, 𝛿, 𝑘), with 𝑎 = 0.5, is 𝛿-satisfiable

using

∫
dReal. The tool answered that it was unsatisfiable. From this we concluded that for 𝑎 = 0.5,

𝛾 (1) > 0.5 for all 𝜖 ∈ [0.5, 0.9]. While we guessed the value of 𝑎 once we got that the formula is

valid, one could also perform a binary search to narrow down the sub-interval containing 𝑎.

3 Background
The goal of this paper is to develop 𝛿-decision procedures for first order logic formulas over

reals. In this section we formally introduce what we mean by determining the 𝛿-satisfiability of a

formula (Section 3.1). After that we introduce the interval constraint propagation (ICP) algorithm

(Section 3.2) that forms the backbone of a 𝛿-decision procedure.

3.1 𝛿-Decision Procedures over the Real Numbers
We recall the theory of 𝛿-decision procedures outlined in [11]. We begin with a quick recap of

recursive real analysis [18]. Let N,Z,R denote the sets of natural numbers, integers, and reals,

respectively. Let𝐴𝑛
denote the set of 𝑛-tuples over𝐴. For 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 , | |𝑥 | |= max1≤𝑖≤𝑛 |𝑥𝑖 |.

Let D = {𝑚
2
𝑛 | 𝑚 ∈ Z, 𝑛 ∈ N} be the set of dyadic rational numbers. Real numbers shall be

represented by sequences of dyadic rational numbers that converge to them. Such sequences are

called names and are defined as follows.

Definition 3.1. A name of a real number 𝑟 ∈ R is a function ⟨𝑟 ⟩ : N→ D such that for all 𝑖 ∈ N,
|⟨𝑟 ⟩(𝑖) − 𝑟 |< 2

−𝑖
. A real number 𝑟 is be said to be computable if it has a computable name ⟨𝑟 ⟩, i.e.,

there is a Turing Machine𝑀⟨𝑟 ⟩ which on input 𝑛 outputs ⟨𝑟 ⟩(𝑛).

Since real numbers are functions in this representation, a function on R is a functional, ie, a
function that maps functions to functions. To define computable functions on R, we recall the
notion of a recursive functional [18]. “Computable functionals” are defined using a function oracle
Turing machine. A function oracle Turing machine 𝑀 is a Turing machine with a special query
tape, and special states 𝑞query and 𝑞ans. When𝑀 is run with the function 𝑓 as the oracle, if𝑀 enters

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

Checking 𝛿-Satisfiability of Reals with Integrals 105:9

state 𝑞query with 𝑖 on the query tape, then in one step, 𝑀 moves to state 𝑞ans and query tape is

overwritten to have 𝑓 (𝑖). As always,𝑀 with the oracle 𝑓 is denoted as𝑀 𝑓
.

Definition 3.2 (Computable Functions). A function 𝑓 :⊆R→ R is said to be computable if there

is a function oracle Turing machine 𝑀 outputting dyadic rational numbers such that for any

𝑟 ∈ R ∩ dom(𝑓), name ⟨𝑟 ⟩, and 𝑖 ∈ N, |𝑀 ⟨𝑟 ⟩(𝑖) − 𝑓 (𝑟)|< 2
−𝑖
. In other words,𝑀 ⟨𝑟 ⟩(0), 𝑀 ⟨𝑟 ⟩(1), . . . is a

name of 𝑓 (𝑟).

Many natural functions are computable in this sense, including sum, product, exponentiation, and

trigonometric functions. The composition of computable functions is also computable. Definitions

of computable numbers and computable functions can be generalized to computable tuples in R𝑛

and computable functions of the type R𝑛 → R, respectively.
Computable functions over R𝑛 are continuous [18]. Uniformly continuous functions on a domain

𝐶 ⊆ R𝑛 are continuous functions such that for each 𝜖 > 0 there exist a 𝛿 > 0 such that for all

𝑥,𝑦 ∈ 𝐶, |𝑓 (𝑥)− 𝑓 (𝑦)| < 𝜖 whenever | |𝑥 −𝑦 | |< 𝛿. Any continuous function over a compact subset of

R is uniformly continuous [25]. Given a uniformly continuous function 𝑓 on domain 𝐶 , a uniform

modulus of continuity for 𝑓 is a function𝑚 : N → N such that for any 𝑥,𝑦 ∈ 𝐶 , and 𝑖 ∈ N, if
| |𝑥 − 𝑦 | |< 2

−𝑚(𝑖)
then |𝑓 (𝑥) − 𝑓 (𝑦)| < 2

−𝑖
. It turns out that computable functions have computable

uniform modulus of continuity over any compact subset.

Theorem 1 ([18]). For any computable 𝑓 :⊆R𝑛 → R and compact subset 𝐶 ⊆ dom(𝑓), 𝑓 has a
computable uniform modulus of continuity over 𝐶 , ie, there is a Turing machine 𝑀𝑓 ,𝐶 such that on
input 𝑖 , outputs 𝑗 such that if 𝑥,𝑦 ∈ 𝐶 and | |𝑥 − 𝑦 | |< 2

− 𝑗 then |𝑓 (𝑥) − 𝑓 (𝑦)| < 2
−𝑖 .

Let us now define a logic, LF , built over such computable functions over tuples of real numbers.

Let F be a set of computable functions over tuples of real numbers. A Σ1 sentence is a sentence of

the form ∃𝑥1 ∈ 𝐼1∃𝑥2 ∈ 𝐼2 · · · ∃𝑥𝑘 ∈ 𝐼𝑘𝜓 where 𝐼 𝑗 is a closed interval, and𝜓 is quantifier-free and is

a Boolean combination of atomic formulas of the form 𝑓 (𝑥 𝑗) ⊲⊳ 0 with ⊲⊳ ∈ {<, ≤, >, ≥} and 𝑓 ∈ F .
It is easy to show that any such sentence 𝜑 can be converted to a normal form with the structure

∃𝑥1 ∈ 𝐼1 · · · ∃𝑥ℓ ∈ 𝐼ℓ
∧

𝑖

∨
𝑗 𝑓𝑖 𝑗 = 0. For such a sentence 𝜑 , a 𝛿-weakening (𝛿 ≥ 0) of 𝜑 is the formula

𝜑𝛿
= ∃𝑥1 ∈ 𝐼1 · · · ∃𝑥𝑘 ∈ 𝐼𝑘

∧
𝑖

∨
𝑗 |𝑓𝑖 𝑗 |< 𝛿 .

Theorem 2 ([11]). Given sentence 𝜑 of the form ∃𝑥1 ∈ 𝐼1 · · · ∃𝑥ℓ ∈ 𝐼ℓ
∧

𝑖

∨
𝑗 𝑓𝑖 𝑗 = 0 where each

𝑓𝑖 𝑗 ∈ F , defined over 𝐼1 × 𝐼2 · · · × 𝐼ℓ and 𝛿 > 0, there is an algorithm A that always terminates and
outputs one of two answers — unsat or 𝛿-sat — with the following property. If A outputs unsat then 𝜑
is not true over R and if A outputs 𝛿-sat then 𝜑𝛿 is true over R.

The algorithm given by Theorem 2 solves the problem of checking if 𝜑 is true approximately as

follows. If 𝜑 is true thenA always answers 𝛿-sat. And if both 𝜑 and 𝜑𝛿
are not true thenA always

answers unsat. But if 𝜑 is not true but 𝜑𝛿
is true thenA may respond with either unsat or 𝛿-sat. The

proof of Theorem 2 crucially exploits the uniform continuity of computable functions. Theorem 2

can be generalized to give an approximate decision procedure for ∃∀-sentences, rather than only

existentially quantified sentences [20]. However, all quantified variables are still constrained to

take values in a closed interval.

3.2 Interval Constraint Propagation (ICP) and dReal
The core engine of the 𝛿-decision procedure is Interval Constraint Propagation (ICP) [5], which
through a combination of pruning and branching, attempts to determine if a 𝛿 weakening of ∧𝑖 𝑓𝑖 = 0

holds when the free variables are constrained to be within an initial box. Let us start with some

useful definitions.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

105:10 Cody Rivera, Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

Definition 3.3 (Intervals, Boxes, and Hulls [11]). The set of real closed intervals with floating-point

endpoints is defined as follows: IF = {[𝑎, 𝑏] | 𝑎, 𝑏 ∈ F, 𝑎 ≤ 𝑏}, where F is the finite set of floating

point numbers augmented with∞ and −∞. The set of boxes containing these intervals is defined
by BF =

⋃∞
𝑖=1
IF𝑖 . The hull of a given set 𝑆 ⊆ R is defined by Hull(𝑆) =

⋂{𝐼 ∈ IF | 𝑆 ⊆ 𝐼 }.
For the rest of the paper, we shall assume that there is a positive integer ulp such for any two

floating points 𝑎 < 𝑏 with 𝑏 − 𝑎 > 1

2
ulp , there is a floating point 𝑐 such 𝑎 < 𝑐 < 𝑏.

1 Input: The constraints 𝑓1 = 0, . . . , 𝑓𝑚 = 0

2 Input: The initial box 𝐵0 = 𝐼 0

0
× · · · × 𝐼 0

𝑛

3 Input: A positive real constant 𝛿

4 Output: 𝛿-sat or unsat
5

6 𝑆 ← Stack{𝐵0}
7

8 while 𝑆 ̸= ∅:
9 𝐵 ← 𝑆.pop()

10 while ∃1 ≤ 𝑖 ≤ 𝑚, 𝐵 ̸= Prune(𝐵, 𝑓𝑖):
11 𝐵 ← Prune(𝐵, 𝑓𝑖)

12 if 𝐵 ̸= ∅:
13 if ∃1 ≤ 𝑖 ≤ 𝑚, |𝑓 #

𝑖 (𝐵)|≥ 𝛿:
14 {𝐵1, 𝐵2} ← Branch(𝐵)

15 𝑆.push({𝐵1, 𝐵2})
16 else:
17 return 𝛿-sat
18

19 return unsat

Algorithm 1. Interval Constraint Propagation (as presented in [13])

We continue with the notion of an interval extension of a function.

Definition 3.4 (Interval Extension). An interval extension of a function 𝑓 :⊆R𝑛 → R is a function

𝑓 #
:⊆BF→ IF such that for all 𝐵 ∈ BF ∩ dom(𝑓 #

), {𝑓 (y) | 𝑦 ∈ 𝐵} ⊆ 𝑓 #
(𝐵).

The ICP algorithm is shown as Algorithm 1. A crucial subroutine in the algorithm is pruning,
written as Prune(𝐵, 𝑓𝑖), whose output is a smaller box that satisfies the following properties.

Definition 3.5 ([11]). Awell-defined pruning operator Prune : BF×F → BF, where F is a finite set

of computable functions, has the following properties: (W1) Prune(𝐵, 𝑓) ⊆ 𝐵; (W2) If Prune(𝐵, 𝑓) ̸= ∅,
then 0 ∈ 𝑓 #

(Prune(𝐵, 𝑓)); (W3) 𝐵 ∩ 𝑍 𝑓 ⊆ Prune(𝐵, 𝑓), where 𝑍 𝑓 = {x ∈ R𝑛 | 𝑓 (𝑥) = 0}.
Summarized, condition (W1) states that a pruning operator never adds points to the box, while

condition (W2) states that if the pruned box is non-empty, then the interval extension of 𝑓 on that

pruned box must contain zero, meaning that the pruned box must contain a potential root of 𝑓 .

Condition (W3) states that the pruning operator must not prune out actual roots of 𝑓 if they exist.

On the other hand, pruning is often insufficient in shrinking the box enough to find a solution.

The fallback is to perform branching: splitting one of the intervals in the box, and dividing the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

Checking 𝛿-Satisfiability of Reals with Integrals 105:11

problem into subproblems. More formally, if the original box 𝐵 = 𝐼1 × · · · × 𝐼𝑘 × · · · 𝐼𝑛 , then
Branch(𝐵, 𝑘) yields the two boxes 𝐵′ = 𝐼1 × · · · × 𝐼 ′𝑘 × · · · 𝐼𝑛 and 𝐵′′ = 𝐼1 × · · · × 𝐼 ′′𝑘 × · · · 𝐼𝑛 , where
𝐼 ′
𝑘

= [𝑎, 𝑐], 𝐼 ′′
𝑘

= [𝑐, 𝑏], and 𝐼𝑘 = [𝑎, 𝑏] for some 𝑎 < 𝑐 < 𝑏. In case there is no floating point between

𝑎 and 𝑏, Branch(𝐵, 𝑘) = 𝐵. Further, we let Branch(𝐵) be Branch(𝐵, 𝑘) if 𝑘 is the smallest index

1 ≤ 𝑘 ≤ 𝑛 such that Branch(𝐵, 𝑘) ̸= 𝐵. If no such 𝑘 exists, then we let Branch(𝐵) = 𝐵.

Let F be a finite set of computable functions on R𝑛 . Recall that each 𝑓𝑖 ∈ F is uniformly

continuous on each compact set 𝐶 on its domain. For each F , 𝑟 ∈ R and bounded box 𝐵0 ⊆⋂
𝑓 ∈F dom(𝑓), we let modulus(F , 𝑟 , 𝐵0) be the smallest integer 𝑗 > 0 such that |𝑓𝑖 (x − y)| < 𝑟 for

each 𝑓𝑖 ∈ F whenever x, y ∈ 𝐵0 and | |x − y| |∞< 1

2
𝑗 . . Let F #

= {𝑓 #

1
, . . . , 𝑓 #

𝑚}. We say that F #
is

𝛿-proximal, where 𝛿 ∈ Q, if for all 𝐵 ∈ BF, and for all 𝑓𝑖 , if 𝑧 ∈ 𝑓 #

𝑖 (𝐵), then there exists x ∈ 𝐵∩dom(𝑓)

such that |𝑧 − 𝑓𝑖 (x)|< 𝛿/3. We state the termination of Algorithm 1, given a reasonable assumption

on interval extensions, as follows:

Theorem 3. Let 𝛿 ∈ Q and F = {𝑓1, . . . , 𝑓𝑚} be arbitrary. Let F #
= {𝑓 #

1
, . . . , 𝑓 #

𝑚}. Algorithm 1
terminates if

(1) Prune is well-defined,
(2) F # is 𝛿-proximal, and
(3) modulus(F , 𝛿

4
, 𝐵0) > ulp.

We prove this theorem in Appendix A of our auxiliary material.

Given termination, the correctness of Algorithm 1 is provided by the following theorem:

Theorem 4 ([11]). Let 𝛿 ∈ Q. Algorithm 1 is a 𝛿-decision procedure if and only if Prune is a
well-defined pruning operator.

Algorithm 1 is combined with a SAT solver to provide a 𝛿-decision procedure for LF , which is

implemented in the tool dReal [12]. The functions F for the version of LF implemented in dReal

do not contain integrals and this paper extends the approach to include integrals.

∃-∀ Queries. The ICP algorithm as presented works for queries with only existential quantifi-

cation, however, the algorithm has been extended to support queries involving ∃-∀ formulas in a

later work [20]. Formulas with such quantifier alternation are simplified to the following standard

form: ∃𝑥1 ∈ 𝐼1 · · · ∃𝑥ℓ ∈ 𝐼ℓ
∧

𝑖

(
∀𝑦1 ∈ 𝐼1 · · · ∀𝑦ℓ ∈ 𝐼ℓ

∨
𝑗 𝑓𝑖 𝑗 ≥ 0

)
. The resulting solver is similar to

Algorithm 1, but instead of dealing with a set of constraints of the form 𝑓𝑖 𝑗 = 0, it deals with a

set of constraints of the form ∀𝑦1 ∈ 𝐼1 · · · ∀𝑦ℓ ∈ 𝐼ℓ
∨

𝑗 𝑓𝑖 𝑗 ≥ 0. The Prune operator is changed to

accommodate these kinds of constraints.

In order to prune the constraint, the theory solver first tries to find a satisfying assignment,

using the existing machinery for checking 𝛿-satisfiability over existentially-quantified formulas, for

the variables 𝑦1, · · · , 𝑦ℓ such that

∧
𝑗 𝑓𝑖 𝑗 < 0, the negation of

∨
𝑗 𝑓𝑖 𝑗 ≥ 0, holds. In fact, in order to

rule out spurious assignments, the formula is strengthened to

∧
𝑗 𝑓𝑖 𝑗 < 𝜖 , for appropriately chosen

𝜖 . If such an assignment 𝑎1, · · · , 𝑎ℓ exists, then the ordinary pruning algorithm is performed on

each of the constraints 𝑓𝑖 𝑗 ≥ 0, for each 𝑗 , with 𝑎1, · · · , 𝑎ℓ replacing 𝑦1, · · · , 𝑦ℓ . The intersection
of the results of pruning for each disjunct 𝑗 gives us a feasible pruned box for the constraint

∀𝑦1 ∈ 𝐼1 · · · ∀𝑦ℓ ∈ 𝐼ℓ
∨

𝑗 𝑓𝑖 𝑗 ≥ 0.

This technique for supporting quantifier alternation is implemented in the present version of

dReal, dReal4 [1], and is able to handle our extensions to support integration with relatively minor

modifications.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

105:12 Cody Rivera, Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

4 𝛿-Decision Procedures in the Presence of Integrals
We present the main algorithmic results of this paper in this section. We begin by formally defining

the logic L𝑖𝑛𝑡 , which consists of first-order formulas over reals that contain expressions involving

exponentials, logarithms, trigonometric functions, and integrals of functions built through such

expressions. After that, we present our 𝛿-decision procedure for L𝑖𝑛𝑡 by providing algorithms for

the key components in ICP to handle integrals.

4.1 Syntax of Terms∫
dReal implements a 𝛿-decision procedure for a logic we call L𝑖𝑛𝑡 . L𝑖𝑛𝑡 is a version of LF (Sec-

tion 3.1) where the following grammar gives the terms to build the elementary computable functions.

𝑡 ::= 𝑥 | 𝑐 | −𝑡 | 1/𝑡 | |𝑡 | | 𝑡 + 𝑡 | 𝑡 × 𝑡 | sin(𝑡) | cos(𝑡) | 𝑒𝑡 | ln(|𝑡 |) |
∫𝑡

𝑡

𝑡𝑑𝑧 (13)

where 𝑐 is any rational number, 𝑥 is a variable, −𝑡, 1/𝑡, |𝑡 |, 𝑡 + 𝑡, 𝑡 × 𝑡, sin(𝑡), cos(𝑡), 𝑒𝑡 , ln(𝑡) represent

the standard negation, reciprocal, absolute value, addition, multiplication, trigonometric sine,

trigonometric cosine, exponential and natural logarithm functions. These terms are already present

in dReal. The term

∫𝑡
𝑡
𝑡𝑑𝑧, on the other hand, is an addition in our tool,

∫
dReal, and represents

integration. Observe that 𝑧 is a bound variable in

∫𝑡
𝑡
𝑡𝑑𝑧, and the syntax allows for nesting of

integrals. More formally, fvar(𝑡), the set of free variables of 𝑡 can be defined inductively as follows:

fvar(𝑡) =

{𝑥} if 𝑡 = 𝑥

∅ if 𝑡 = 𝑐

fvar(𝑡1) if 𝑡 ∈ {−𝑡1, 1/𝑡1, |𝑡1 |, sin(𝑡1), cos(𝑡1)}
fvar(𝑡1) ∪ fvar(𝑡2) if 𝑡 ∈ {𝑡1 + 𝑡2, 𝑡1 × 𝑡2}
fvar(𝑡1) ∪ fvar(𝑡2) ∪ (fvar(𝑡3) \ 𝑧) if 𝑡 =

∫𝑡2

𝑡1

𝑡3𝑑𝑧

Observe that a term 𝑡 with free variables 𝑥1, . . . , 𝑥𝑚 can be identified as a function [[𝑡]] : R𝑚 → R.
The interpretation [[𝑡]] is defined in the expected way, except for the terms of the form

1

𝑡
and

ln(|𝑡 |). For 1/𝑡 , we define [[1/𝑡]] =
1

[[𝑡]]
for |[[𝑡]]| > 𝛿 and

1

𝛿
otherwise. For ln(|𝑡 |), we define

[[ln(|𝑡 |)]] = ln(|[[𝑡]]|) for |[[𝑡]]| > 𝛿 and ln(𝛿) otherwise (Note that [[𝑡]] in these cases requires a

constant 𝛿 — this should be set equal to the 𝛿 used in the decision procedure). Let F𝑖𝑛𝑡 be the set of
functions built using the term language according to equation 13, and the resulting logic be L𝑖𝑛𝑡 .

Finally, we observe that standard mathematical properties imply that the functions in F𝑖𝑛𝑡 are
computable. Thus, we can conclude from Theorem 2 that 𝛿-satisfiability of L𝑖𝑛𝑡 is decidable.

Theorem 5 (𝛿-satisfiability of L𝑖𝑛𝑡). For each term 𝑡 ∈ F𝑖𝑛𝑡 , [[𝑡]] is a computable function. Thus,
there is a 𝛿-decision procedure for L𝑖𝑛𝑡 .

We prove this theorem in Appendix B of our auxiliary material.

4.2 The Algorithm
We implement a decision procedure for 𝛿-satisfiability of L𝑖𝑛𝑡 based on the ICP algorithm (See

Algorithm 1). For this, one must come up with a concrete implementation of the Prune function

and a means of calculating the interval extension of functions to check if a box might satisfy the

constraints.

By default, dReal uses the HC4Revise algorithm [26] to implement the Prune operator. This

algorithm decomposes each constraint in the input to the ICP algorithm into a tree form and

attempts to shrink the input box by first computing the interval extension of the operation at each

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

Checking 𝛿-Satisfiability of Reals with Integrals 105:13

node, given the intervals for the input variables, and then using the properties of the constraint to

eliminate infeasible values from the input box.

The primitive operations underlying the HC4Revise algorithm include forward propagation: given
input nodes with intervals 𝐼1, · · · , 𝐼𝑛 , set the current node to 𝐼𝑓 = 𝑓 #

(𝐼1, · · · , 𝐼𝑛), where 𝑓 #
represents

the interval extension of the function specified at the given node. The other operation is backward
propagation: given an interval 𝐼𝑓 which represents the values that node can take on, calculate

sub-intervals 𝐼 ′
1
, · · · , 𝐼 ′𝑛 such that 𝑓 #

(𝐼 ′
1
, · · · , 𝐼 ′𝑛) ⊆ 𝐼𝑓 . Thus, in order to incorporate integration, we

have to implement both forward and backward propagation for constraints that include integral

terms. We describe them next.

Forward Propagation. Forward propagation for terms with integrals depends on the ability

to compute an interval enclosure of an integral. This is done using an external library, Arb, to

numerically calculate an enclosure of an integral [16], and is discussed further in Section 5.

1 Input: A function 𝑔 : R𝑚+2 → R
2 such that 𝑔(𝑟ℓ , 𝑟𝑢, 𝑟1, . . . , 𝑟𝑚) =

∫𝑟𝑢
𝑟ℓ
𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧, where

𝑓 : R𝑚+1 → R.
3 Input: An input box 𝐵 = [𝑟ℓ , 𝑟𝑢, 𝑟1, . . . , 𝑟𝑛]

4 Input: The interval size threshold 𝑇, and a small positive
constant 𝜖.

5 Output: The output box 𝐵′ = [𝑟ℓ , 𝑟𝑢, 𝑟1, . . . , 𝑟𝑛]

6

7 𝐵′ ← 𝐵

8 if ∃1 ≤ 𝑖 ≤ |𝐵′ |, |𝐵′[𝑖]| > 𝑇:
9 return
10 for 𝑖 ← 1 to |𝐵′ |:
11 𝑖𝑣 ← [lb(𝐵′[𝑖]), lb(𝐵′[𝑖]) + 𝜖]

12 𝑛𝑒𝑤𝑖𝑣 ← ∅
13 while ub(𝑖𝑣) ≤ ub(𝐵′[𝑖]):
14 𝑟 ← Eval(𝑔#, 𝐵′[𝑖 := 𝑖𝑣])

15 if 𝑟 ∩ {0} ≠ ∅:
16 𝑛𝑒𝑤𝑖𝑣 ← Hull(𝑛𝑒𝑤𝑖𝑣 ∪ 𝑖𝑣)

17 𝑖𝑣 ← 𝑖𝑣 + 𝜖

18 𝐵′[𝑖]← 𝑛𝑒𝑤𝑖𝑣

Algorithm 2. Backwards Propagation of Intervals for Integration. For performance reasons, when an input
interval is wider than a threshold 𝑇 , backwards propagation does not happen, resulting in the ICP loop
branching instead. In our experiments, this threshold 𝑇 = 0.1.

Backward Propagation. Algorithm 2 is our technique for the backward propagation of integrals.

As input, it takes a function 𝑔(𝑟ℓ , 𝑟𝑢, 𝑟1, . . . , 𝑟𝑚) =

∫𝑟𝑢
𝑟ℓ
𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧, where 𝑓 : R𝑚+1 → R is an

expression in our term language, and a box consisting of “current” intervals for subexpressions

corresponding to the limits of integration (𝑟ℓ , 𝑟𝑢) and free variables appearing in the integrand

(𝑟1, · · · , 𝑟𝑛). In Algorithm 2, lb and ub represent the lower and upper bounds of an interval, 𝜖 is

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

105:14 Cody Rivera, Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

a small non-negative number, the statement 𝑆[𝑖 := 𝑒] represents a sequence 𝑆 with 𝑖th element

replaced by 𝑒 .

The algorithm iterates through all the input intervals in the given box 𝐵. At each iteration step

𝑖 , the procedure breaks the 𝑖-th interval into subintervals of length 𝜖. Then, for each subinterval,

the integral is evaluated after the current version of the 𝑖-th interval is replaced with it. If the new

interval intersects the singleton set {0}, the 𝜖-wide subinterval is added to the new version of the

𝑖-th interval of the new box 𝐵′. Note that if 𝜖 is larger, the algorithm will run faster but perform a

less precise pruning, while if 𝜖 is smaller, the algorithm will run slower but perform a more precise

pruning.

The following result ensures that Algorithm 2 can be safely incorporated into the ICP algorithm.

Theorem 6. Let𝑔(𝑟ℓ , 𝑟𝑢, 𝑟1, . . . , 𝑟𝑚) =

∫𝑟𝑢
𝑟ℓ
𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧 be a computable function. Let Prune(𝐵,𝑔)

be the box output by Algorithm 2 (where 𝐵 is a box enclosing the variables 𝑟ℓ , 𝑟𝑢, 𝑟1, . . . 𝑟𝑚 , such that if
𝐵 ̸= ∅, then 0 ∈ 𝑔#

(𝐵)). Then Prune(𝐵,𝑔) is a well-defined pruning operator.

Proof. We proceed by proving the three properties in Definition 3.5. Briefly note that if the width

of an interval in the box 𝐵 exceeds the threshold 𝑇 , then Prune(𝐵,𝑔) = 𝐵, and the three properties

are trivially satisfied. If this is not the case, we proceed as follows, noting that 𝐵′ = Prune(𝐵,𝑔) as

in Algorithm 2.

(W1) (𝐵′ ⊆ 𝐵) : It suffices to show that 𝐵′ ⊆ 𝐵 is maintained across the outer loop from lines 10-18.

Since only the element 𝐵′[𝑖] is mutated in the outer loop body, given some 𝑖 ∈ 1, . . . , |𝐵′ |, it
suffices to show that 𝐵′[𝑖] ⊆ 𝐵[𝑖] is maintained. This is implied by the following inductive

invariant on the inner loop from lines 13-18: 𝑛𝑒𝑤𝑖𝑣 ⊆ 𝐵′[𝑖] ∧ lb(𝑖𝑣) ≥ lb(𝐵′[𝑖]). The invariant
clearly holds on entry. To show preservation across the loop body, we proceed as follows.

We first prove that the conjunct 𝑛𝑒𝑤𝑖𝑣 ⊆ 𝐵′[𝑖] is maintained. Note that either 𝑛𝑒𝑤𝑖𝑣 remains

unchanged or it is altered by line 16. In the first case, the conjunct is clearly maintained.

But in the second case, note that 𝑛𝑒𝑤𝑖𝑣 ⊆ 𝐵′[𝑖] by the invariant, and 𝑖𝑣 ⊆ 𝐵′[𝑖] by both

the invariant and the truth of the guard ub(𝑖𝑣) ≤ ub(𝐵′[𝑖]) on line 13. Recalling that both

𝑛𝑒𝑤𝑖𝑣 and 𝑖𝑣 are intervals, it follows that min(lb(𝑛𝑒𝑤𝑖𝑣), lb(𝑖𝑣)) and max(ub(𝑛𝑒𝑤𝑖𝑣), ub(𝑖𝑣))

are in the interval 𝐵′[𝑖]. Therefore, Hull(𝑛𝑒𝑤𝑖𝑣 ∪ 𝑖𝑣) ⊆ 𝐵′[𝑖], and the conjunct is maintained.

Additionally, it is clear that the conjunct lb(𝑖𝑣) ≥ lb(𝐵′[𝑖]) is maintained by line 17, since it is

required that 𝜖 > 0.

(W2) (If 𝐵′ ̸= ∅, then 0 ∈ 𝑔#
(𝐵′)): Note that if 𝐵′ ̸= ∅, then for all indices 𝑖 ∈ 1, . . . , |𝐵′ |, 𝐵′[𝑖] ̸= ∅.

Therefore, at iteration 𝑗 = |𝐵′ | of the outer loop from lines 10-18, there must have been at

least one point where the guard on line 15, 𝑟 ∩ {0}, was true. Therefore, there exists a value of
𝐵′ before iteration 𝑗 , 𝐵′′, and an interval 𝑖𝑣 such that 0 ∈ 𝑔#

(𝐵′′[𝑗 := 𝑖𝑣]). Let 𝐵′′′ be the value
of 𝐵′ at the end of the algorithm after iteration 𝑗 . Note that since the interval 𝑖𝑣 ⊆ 𝐵′′′[𝑗]
(easy to show by analyzing the inner loop on lines 13-17), 𝐵′′′[𝑖] = 𝐵′′[𝑖] for all other 𝑖 , and
𝑔#

is convex, it follows that 0 ∈ 𝑔#
(𝐵′′′).

(W3) (𝐵 ∩ 𝑍𝑔 ⊆ 𝐵′, where 𝑍𝑔 = {𝑥 ∈ R𝑛 | 𝑔(𝑥) = 0}) : Let 𝑅 = 𝐵 ∩ 𝑍𝑔. It suffices to show that

𝑅 ⊆ 𝐵′ is maintained across the outer loop from lines 10-18. Since only the element 𝐵′[𝑖] is
mutated in the outer loop body, given some 𝑖 ∈ 1, . . . , |𝐵′ |, it suffices to show that 𝑅[𝑖] ⊆ 𝐵′[𝑖]
is maintained. Let 𝑟 ∈ 𝑅 be fixed. Further note that 𝑟 [𝑖] ∈ 𝐵′[𝑖] initially. Thus, there exists
a value 𝑖𝑣 ⊆ 𝐵′[𝑖] reached by the inner loop from lines 13-18 such that 𝑟 [𝑖] ∈ 𝑖𝑣 . Since

𝑟 ∈ 𝐵′[𝑖 := 𝑖𝑣], and 𝑔(𝑟) = 0, it follows that 0 ∈ 𝑔#
(𝐵′[𝑖 := 𝑖𝑣]). Therefore, the guard on line

15, 𝑟 ∩ {0} = ∅, will be true, and it follows that 𝑖𝑣 ⊆ 𝑛𝑒𝑤𝑖𝑣 , the new value of 𝐵′[𝑖]. Thus,
𝑟 [𝑖] ∈ 𝑛𝑒𝑤𝑖𝑣 , and it follows that 𝑅[𝑖] ⊆ 𝐵′[𝑖] is maintained. □

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

Checking 𝛿-Satisfiability of Reals with Integrals 105:15

Note that, for the sake of performance, we implement an optimized version of the algorithm that,

instead of performing a linear scan from lb(𝐵′[𝑖]) to ub(𝐵′[𝑖]) to determine the upper and lower

bounds of 𝑛𝑒𝑤𝑖𝑣 , performs a binary search to find those bounds.

5 Implementation∫
dReal implements a 𝛿-decision procedure for satisfiability of formulas with integrals over the

reals. We outline the main features of our tool design.

5.1 Interval Computations
The present version of dReal, dReal4 [1], implements interval constraint propagation with the

support of interval arithmetic and constraint programming library IBEX [15]. This library provides

a means for constructing and computing the interval enclosure for arithmetic expressions involving

a range of linear and non-linear real functions. Additionally, it provides functionality for contracting

a box by pruning, by propagating interval arithmetic backward according to a constraint using

algorithms such as HC4Revise [26]. However, IBEX does not presently support integral expressions.

To support integration, we incorporate an external library for computing ball enclosures of
arithmetic expressions, Arb [16]. Unlike an interval, a ball is specified by a midpoint 𝑚 and a

radius 𝑟 , and represents the interval [𝑚 − 𝑟,𝑚 + 𝑟] (these values are implemented as arbitrary

precision numbers, hence the name Arb). Notably for our purposes, the library supports computing

an interval enclosure of the integral for an arbitrary function; a programmer needs only to write

an auxiliary function to compute the integrand at a particular point.

To incorporate Arb’s integration procedure into IBEX, we add support for integral expressions to

the expression graph data structure it provides. When evaluating an integral, intervals around the

limits are first evaluated and then converted to balls, and then Arb’s integration procedure is given

an auxiliary function that computes values of the integrand. This function is given extra data: the

integrand, which is another expression graph, and all the values of variables that occur free with

respect to the integrand. When called upon to provide the value of the integrand at a particular

point, the function evaluates the integrand with the value of the variable of integration and the

other values passed to it. Nested integrals are fully supported in our implementation of integration:

when one is encountered in an integral body, a nested invocation of Arb’s integration procedure

and our support code is performed to compute its value. Once Arb returns from the integration

procedure, the ball is converted into an interval in our tool, and passed onwards.

Due to the design of the integration algorithm, Arb initially treats the integrand as a complex-

valued function on complex variables. If it is piecewise-holomorphic (complex-differentiable in

a neighborhood of every point in a given domain), then the integration converges very quickly

[17, 27]. In order to support the use of this algorithm, a complex ball enclosure must be computed

around the integrand. To facilitate this, we implement a new expression evaluator which works

on the same expression graph implemented in IBEX, but which uses complex balls instead of real

intervals as the datatype it manipulates. This new evaluator also checks conservatively whether

the integrand is holomorphic with respect to the variable of integration on the given input or not,

signaling this fact to the integration procedure if the integrand may not be holomorphic.

5.2 Tool Engineering
Additional code written in our extension

∫
dReal of dReal [1] is in C++. An overview of

∫
dReal’s

architecture is shown in Fig. 3. The modifications made are highlighted in red, and are as follows.

We amend the dReal driver to support new syntax for integration. In addition, we extend the

expression evaluator in IBEX to compute interval enclosures of expressions to support integration,

by linking to the aforementioned Arb library. Specifically, we add support for forward and backward

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

105:16 Cody Rivera, Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

dReal

Parser

Integrals

ICP Algorithm

IBEX

Prune

Back Prop

Integral exp

Fwd Prop

Integral exp

Arb

formula

𝛿-sat
unsat

Fig. 3.
∫
dReal Architecture. Extensions to dReal shown in red.

computation involving integrals. This is again supported by linking IBEX to Arb. A number of minor

modifications were made to support queries with quantifier alternation, but the core implementation

remains the same.

6 Case Studies
In order to provide insight on the kinds of queries

∫
dReal can handle, we present the following

case studies in addition to the motivating examples in Section 2.

6.1 Income Fairness by Gender
For this case study, we adapt another example related to algorithmic fairness from FairSquare [2].

This example is derived from their decision tree 𝐷𝑇4, which determines the salary of an employee

given an independent population model. The procedure determines whether to pay a higher salary

to someone based on a number of factors unrelated to gender. Intuitively, a fair algorithm should

decide the higher salary with nearly equal probability depending on the employee’s gender.

From this procedure, we derive a query to determine whether the given algorithm is fair based

on the employee’s gender. More specifically, we derive the following formula:

𝜙(𝜖, 𝜇, 𝜎) ::=

1

√
2𝜋𝜎

∫
4𝜎

7073.5

𝑒
− (𝑥−𝜇)

2

2𝜎2 𝑑𝑥 > (1−𝜖)

(
1√︁

2𝜋 (𝜎 + 434.557)

∫
4(𝜎+434.557)

7073.5

𝑒
− (𝑥−(𝜇+31.5895))

2

2(𝜎+434.557)
2 𝑑𝑥 +

14

100000

)
,

where 𝜖 is a small constant that determines the maximum extent of unfairness, while 𝜇 and 𝜎 are

the mean and standard deviation of the normal distribution of earnings.

Two queries in the benchmark suite are based on this formula. Here, we try to prove that a

negated query is unsat, showing fairness of the algorithm.

(1) (high_inc_gd_00): 𝜖 = 0.15, 𝜇 = 568.4105, 𝜎 = 24248365.5428. ¬𝜙(𝜖, 𝜇, 𝜎) given to solver.

(2) (high_inc_gd_01): 𝜖 = 0.15, The following formula is given to the solver:

∃𝜇 ∈ [548.4105, 588.4105], 𝜎 ∈ [548.4105, 588.4105],¬𝜙(𝜖, 𝜇, 𝜎)

The latter formula allows for variation in the population model by permitting some inaccuracies

in the measurement of 𝜇 and 𝜎 , and shows that the procedure remains fair even in the face of this

variation.

We also test a version of this formula that reflects a situation where fairness cannot be proved:

𝜙(𝜖, 𝜇, 𝜎) ::=

1

√
2𝜋𝜎

∫
4𝜎

7073.5

𝑒
− (𝑥−𝜇)

2

2𝜎2 𝑑𝑥 +

14

100000

> (1 − 𝜖)

(
1√︁

2𝜋 (𝜎 + 45079127)

∫
4(𝜎+45079127)

7073.5

𝑒
− (𝑥−(𝜇+760.9595))

2

2(𝜎+45079127)
2

𝑑𝑥

)
.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

Checking 𝛿-Satisfiability of Reals with Integrals 105:17

The resulting formula is the result of modifying the population model of the two genders

represented in the model by significantly skewing the mean and standard deviation between them.

This induces a substantial disparity in income based on gender. Two queries in the benchmark suite

are based on this formula. We try to prove that a query is unsat, which shows that the algorithm is

unfair.

(1) (high_inc_gd_unfair_00): 𝜖 = 0.15, 𝜇 = 568.4105, 𝜎 = 24248365.5428. 𝜙(𝜖, 𝜇, 𝜎) given to solver.

(2) (high_inc_gd_unfair_01): 𝜖 = 0.15, The following formula is given to the solver:

∃𝜇 ∈ [548.4105, 588.4105], 𝜎 ∈ [548.4105, 588.4105], 𝜙(𝜖, 𝜇, 𝜎)

6.2 Privacy of the Gaussian Mechanism
The next case study concerns the privacy of the Gaussian mechanism in differential privacy [7].

Here specifically, we take the mechanism which maps (𝑢, 𝑣) to (𝑢 +N (0, 𝜎2
), 𝑣 +N (0, 𝜎2

)), whereN
is the normal distribution. We consider two points (𝑢1, 𝑣1) and (𝑢2, 𝑣2) neighbors if their Euclidean

distance is less than 1, i.e.,

√︁
(𝑢1 − 𝑢2)

2
+ (𝑣1 − 𝑣2)

2 ≤ 1. The formula pertaining to determining that

the mechanism is private can be seen below:

𝜙(𝜖) ::= 𝑃gauss(𝑢1, 𝑣1, 𝑎, 𝑏, 𝑐, 𝑑) ≤ 𝑒𝜖𝑃gauss(𝑢2, 𝑣2, 𝑎, 𝑏, 𝑐, 𝑑) + 𝛿,

where

𝑃gauss(𝑢, 𝑣, 𝑎, 𝑏, 𝑐, 𝑑) =

1

2𝜋𝜎2

∫𝑏

𝑎

∫𝑑

𝑐

𝑒
− (𝑥−𝑢)

2

2𝜎2 𝑒
− (𝑦−𝑣)

2

2𝜎2 𝑑𝑥𝑑𝑦,

𝛿 =
1

8
, 𝜎 =

2.2
𝜖

and 𝑎 = 𝑏 = 𝑐 = 𝑑 = 10.

Here, 𝜖 is the privacy budget and 𝑃gauss(𝑢, 𝑣, 𝑎, 𝑏, 𝑐, 𝑑) represents the probability that the Gaussian

mechanism outputs a point within the rectangular region [𝑎, 𝑏]×[𝑐, 𝑑]. Thus, this formula represents

a special case of differential privacy.

Also note that (𝑢1, 𝑣1) = (0, 0) and (𝑢2, 𝑣2) = (1, 0). The formula here comprises the following

query, which is expected to return unsat:

(1) (gauss_mech_00): ∃𝜖 ∈ (0.1, 1),¬𝜙(𝜖) sent to solver.

There is additionally a version of the query with the double integral converted to a product of

integrals, where 𝑃gauss is defined as follows:

𝑃gauss(𝑢, 𝑣, 𝑎, 𝑏, 𝑐, 𝑑) =

1

2𝜋𝜎2

(∫𝑏

𝑎

𝑒
− (𝑥−𝑢)

2

2𝜎2 𝑑𝑥

) (∫𝑑

𝑐

𝑒
− (𝑦−𝑣)

2

2𝜎2 𝑑𝑦

)
.

The query is as follows:

(1) (gauss_mech_00_alt1): ∃𝜖 ∈ (0.1, 1),¬𝜙(𝜖) sent to solver.

6.3 Privacy of the Laplace Mechanism
The next case study concerns the privacy of the Laplace mechanism in differential privacy [6]. The

formula pertaining to the first (private) mechanism can be seen here:

𝜙1(𝜖) ::=

∫𝑏

𝑎

𝑒−𝜖 |𝑥 |𝑑𝑥 ≤ 𝑒𝜖
∫𝑏

𝑎

𝑒−𝜖 |𝑥+1 |𝑑𝑥 .

Here, 𝜙1(𝜖) is the inequality that verifies the differential privacy of the Laplace mechanism when

applied to adjacent inputs 0 and -1, with respect to producing an output in the interval [𝑎, 𝑏].

Throughout the queries, 𝑎 = 1 and 𝑏 = 2. We try to prove the privacy of the mechanism for all 𝜖 in

a given range by negating 𝜙1 and checking for unsat, as well as try to disprove the privacy for all 𝜖

in the same range by checking 𝜙1 for unsat. The queries are below:

(1) (lap_mech_00): ∃𝜖 ∈ [0.1, 1],¬𝜙1(𝜖) given to solver.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

105:18 Cody Rivera, Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

(2) (lap_mech_00_not_pri): ∃𝜖 ∈ [0.1, 1], 𝜙1(𝜖) given to solver.

The formula pertaining to the second (non-private) mechanism can be seen here:

𝜙2(𝜖) ::=

∫𝑏

𝑎

𝑒−𝜖 |𝑥 |𝑑𝑥 ≤ 𝑒
𝜖
2

∫𝑏

𝑎

𝑒−𝜖 |𝑥+1 |𝑑𝑥.

Throughout the queries, 𝑎 = 1 and 𝑏 = 2. We try to prove the privacy of the mechanism for all 𝜖 in

a given range by negating 𝜙2 and checking for unsat, as well as try to disprove the privacy for all 𝜖

in the same range by checking 𝜙2 for unsat. The queries are below:

(1) (lap_mech_sat_01): ∃𝜖 ∈ [0.1, 1],¬𝜙2(𝜖) given to solver.

(2) (lap_mech_sat_01_not_pri): ∃𝜖 ∈ [0.1, 1], 𝜙2(𝜖) given to solver.

6.4 Sparse Vector Technique with Two Inputs
This final case study arises from differential privacy verification for the Sparse Vector Technique

algorithm built on top of the Gaussian mechanism in differential privacy, with input length 2 [8, 21].

The following formula pertains to the privacy of this mechanism with respect to outputting (⊥,⊥)

on two inputs (𝑢1, 𝑣1) and (𝑢2, 𝑣2), each of which is an array of two queries, having a Manhattan

distance of 1 from each other.

𝜙(𝜖) ::= 𝑃SVT

(𝑢1,𝑣1),𝐿𝐻𝑆
≤ 𝑒𝜖𝑃SVT

(𝑢2,𝑣2),𝑅𝐻𝑆
+ 𝛿,

where

𝑃SVT

(𝑢,𝑣),𝐿𝐻𝑆
=

1

2𝜋𝜎3

√
2𝜋

∫
+𝑘

−𝑘

∫𝑧

𝑣−𝑘

∫𝑧

𝑢−𝑘
𝑒
− (𝑥−𝑢)

2

2𝜎2 𝑒
− (𝑦−𝑣)

2

2𝜎2 𝑒
− 𝑧2

2𝜎2 𝑑𝑥𝑑𝑦𝑑𝑧 +

3

100

,

𝑃SVT

(𝑢,𝑣),𝑅𝐻𝑆
=

1

2𝜋𝜎3

√
2𝜋

∫𝑘

−𝑘

∫𝑧

𝑣−𝑘

∫𝑧

𝑢−𝑘
𝑒
− (𝑥−𝑢)

2

2𝜎2 𝑒
− (𝑦−𝑣)

2

2𝜎2 𝑒
− 𝑧2

2𝜎2 𝑑𝑥𝑑𝑦𝑑𝑧.

Here, 𝛿 =
1

8
. In the outer integral of the original formulas (not shown here), we have replaced

the lower limit −∞ with −𝑘 and the upper limit∞ with 𝑘 . For the inner integrals of the original

formulas, we have replaced the lower limit −∞ with 𝑣 − 𝑘 and 𝑢 − 𝑘 , respectively. Furthermore, an

error tail bound of
3

100
has been added to the left-hand side of the inequality. In addition to the first

version of this formula with triple integrals, we can also write a version of 𝜙 , 𝜙 ′ using a double

integral over a product of integrals as follows (only redefining 𝑃SVT

(𝑢1,𝑣1),𝐿𝐻𝑆
and 𝑃SVT

(𝑢1,𝑣1),𝑅𝐻𝑆
):

𝑃SVT

(𝑢,𝑣),𝐿𝐻𝑆
=

1

2𝜋𝜎3

√
2𝜋

∫
+𝑘

−𝑘

(∫𝑧

𝑢−𝑘
𝑒
− (𝑥−𝑢)

2

2𝜎2 𝑑𝑥

) (∫𝑧

𝑣−𝑘
𝑒
− (𝑦−𝑣)

2

2𝜎2 𝑑𝑦

)
𝑒
− 𝑧2

2𝜎2 𝑑𝑧 +

3

100

𝑃SVT

(𝑢,𝑣),𝑅𝐻𝑆
=

1

2𝜋𝜎3

√
2𝜋

∫
+𝑘

−𝑘

(∫𝑧

𝑢−𝑘
𝑒
− (𝑥−𝑢)

2

2𝜎2 𝑑𝑥

) (∫𝑧

𝑣−𝑘
𝑒
− (𝑦−𝑣)

2

2𝜎2 𝑑𝑦

)
𝑒
− 𝑧2

2𝜎2 𝑑𝑧.

We define the following queries based on these formulas, attempting to prove privacy by showing

the following to be unsat.

(1) (svt_gauss_00): ∃𝜖 ∈ [0.1, 0.9],¬𝜙(𝜖) given to solver.

(2) (svt_gauss_prd_00): ∃𝜖 ∈ [0.1, 0.9],¬𝜙 ′(𝜖) given to solver.

We fix (𝑢1, 𝑣1) = (1, 0) and (𝑢2, 𝑣2) = (0, 0). We set 𝜎 =

√︁
4/𝜖2

, and 𝑘 should be an upper bound on 𝜎 .

In practice, we vary 𝑘 to evaluate the scalability of

∫
dReal as described in Section 7.3; we evaluate

𝑘 ∈ [1, 2, 3, 4] for svt_gauss_00, and 𝑘 ∈ [4, 8, 12, . . . , 48] for svt_gauss_prd_00.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

Checking 𝛿-Satisfiability of Reals with Integrals 105:19

7 Experiments
Our benchmark suite consists of examples from verifying privacy and accuracy properties of

security algorithms, checking for fairness in machine learning models, and synthesis problems.

They also include artificial examples involving double integrals and trignometric functions. Several

of our examples feature quantifier alternation. For comparison, all examples are also implemented in

Mathematica
®

and tested on version 13.3.1. All experiments were run on an Ubuntu 24.04 computer

equipped with a 3.8 GHz AMD
®

Ryzen 7 Pro 7840HS processor and 32 GB of RAM. Benchmark

examples were chosen to provide variety in the number of input variables, terms with integral

expressions, and nesting depth of integrals, and include formulas with integral terms with constants

for limits of integration and formulas with non-constants as limits of integration. For all the

experiments, we run

∫
dReal with the parameter 𝛿 = 0.001.

We organize the experimental results by dividing benchmarks into four groups: single integral,

double integral, triple integral and quantifier alternation examples in Table 3. We refer to Table 1

for the explanation of the column names. Additionally, we refer to Table 2 to correlate motivating

examples and case studies with our experimental queries.

Table 1. Legend for the column names used in Table 3.

Column Name Description

fv is the number of free variables in the integrals.

size is the maximum interval size of the free variables.

𝑛 is the number of terms with integrals in the formula.

𝑏 ✓ iff any integral in the formula contains a non-constant as an upper or lower limit.

time The time represents the total time taken by

∫
dReal or Mathematica

®

, averaged over

three executions, and is measured in seconds.

result The result indicates the output from

∫
dReal or Mathematica

®

.

speed factor The speed factor is the ratio of Mathematica
®

time over

∫
dReal time.

𝑘 serves as the upper bound for the integrals.

−𝑘 serves as the lower bound for the integrals.

𝜖-width represents the width of the range of 𝜖

ind denotes that Mathematica
®

couldn’t resolve to true or false.

TO denotes

∫
dReal timeout (we have a 10-minute threshold for timeouts).

tt denotes true.

ff denotes false.

Note on Mathematica®: As discussed earlier, we choose Mathematica
®

since to the extent of our

knowledge, it is the only tool that can handle the range of benchmark formulas we evaluate. We

encode the examples as follows. For four examples containing no quantifiers, we use numerical

integration to implement them in Mathematica
®

. For the other examples (43 in total) where we

have quantification, we use Mathematica
®

’s symbolic integration in conjunction with the Resolve

(https://reference.wolfram.com/language/ref/Resolve.html) and FindInstance (https://reference.

wolfram.com/language/ref/FindInstance.html) functions in Mathematica
®

. Note that Mathematica
®

is a proprietary software and few details exist about how these functions are implemented internally.

Note on specialized tools: Since several of the examples are drawn from probabilistic programs,

one might consider the use of tools such as PSI [14], and in the case of the fairness examples,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

https://reference.wolfram.com/language/ref/Resolve.html
https://reference.wolfram.com/language/ref/FindInstance.html
https://reference.wolfram.com/language/ref/FindInstance.html

105:20 Cody Rivera, Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

Table 2. Legend correlating case studies with queries.

Case Study Query

Motivating Example 2.1 eth_colrank_fair_00, eth_colrank_fair_01

Motivating Example 2.2 gauss_forall_00

Case Study 6.1 high_inc_gd_00, high_inc_gd_01,

high_inc_gd_unfair_00, high_inc_gd_unfair_01

Case Study 6.2 gauss_mech_00, gauss_mech_00_alt1

Case Study 6.3 lap_mech_00, lap_mech_00_not_pri, lap_mech_sat_01,

lap_mech_sat_01_not_pri

Case Study 6.4 svt_gauss_00, svt_gauss_sat_00, svt_gauss_prd_00

FairSquare [2]. PSI is inappropriate since to the extent of our knowledge, it computes a sym-

bolic expression for the posterior probability density function, and does not help in checking the

(un)satisfiability of formulas. FairSquare is only somewhat appropriate since it can only handle a

subset of fairness problems. For example, FairSquare determines whether a hiring algorithm is fair

using a fixed population model, while several of our queries determine whether that algorithm

is fair across a range of (Gaussian) population models, where 𝜇 and 𝜎 are varied. We do include

performance results for FairSquare on determining fairness of programs with a fixed population

model which correlate to our experiments in Table 4, although we acknowledge that this is not

a perfect comparison, as FairSquare must also compute the appropriate formulas from the input

program. It is important to note that for the fair programs in Table 4, an unsatisfiability result

implies fairness, while on unfair programs, an unsatisfiability result implies unfairness.

7.1 Benchmarks
The first portion of Table 3 presents results for single integral examples. These include queries for

group fairness [2] for women in salary allocation by employers, as shown in Case Study 6.1, as well

as privacy and accuracy of the Laplace mechanism (privacy was shown in Case Study 6.3) [9]. The

second portion of Table 3 presents the results for double integral examples. These include fairness

of a hiring algorithm, as shown in Motivating Example 2.1 [2], privacy of the Gaussian mechanism,

as in Case Study 6.2, and synthetic queries involving volume comparisons across different regions.

The third portion of Table 3 presents the results for triple integral examples. These include

two versions of privacy queries for the Sparse Vector Technique (SVT) based on the Gaussian

mechanism, adapted from the first query from Case Study 6.4: one is unsat, and the other is 𝛿-sat.

The fourth and final portion of Table 3 presents the results for quantifier alternation examples,

more specifically ∃-∀ queries. These include synthesizing a parameter of a privacy mechanism

in order to obtain the desired utility, as seen in Motivating Example 2.2. We also have different

variants of volume comparison examples. All formulas being checked are of the form ∃𝑎.∀𝜖.𝜓 (𝑎, 𝜖),

contain double integrals, and we try to find the value of 𝑎 such that the formula holds true for a

range of 𝜖 .

7.2 Discussion
Some salient insights from our experiments are as follows.

• Whenever both

∫
dReal and Mathematica

®

give answers, their answers are almost always con-

sistent: on all but one example, if

∫
dReal outputs “unsat” on an example, then Mathematica

®

outputs “false” on the corresponding example (similarly for the outputs “𝛿-sat” and “true”).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

Checking 𝛿-Satisfiability of Reals with Integrals 105:21

Table 3. Results for
∫
dReal and Mathematica® for benchmarks, split in sections from top to bottom: single

integrals, double integrals, triple integrals and ∃-∀ queries.

Benchmarks

∫
dReal Mathematica

® Speed
Example fv size 𝑛 𝑏 time (s) result time (s) result factor
high_inc_gd_00 0 2 × 0.005 unsat 0.650 ff 130

high_inc_gd_unfair_00 0 2 × 0.005 unsat 0.644 ff 129

lap_mech_00 1 0.9 2 × 0.007 𝛿-sat 0.762 ff 109

lap_mech_00_not_pri 1 0.9 2 × 0.007 𝛿-sat 0.843 tt 120

lap_mech_sat_01 1 0.9 2 × 0.006 𝛿-sat 0.822 tt 137

lap_mech_sat_01_not_pri 1 0.9 2 × 0.006 unsat 0.872 ff 145

gauss_mech_00_alt1 1 0.9 4 × 0.015 unsat 1.601 ff 107

lap_acc_00_alt2 2 0.999 1 ✓ 0.075 𝛿-sat 18.531 ind 247

lap_acc_01 2 0.999 1 ✓ 0.088 𝛿-sat 14.366 ind 163

lap_acc_02 2 0.999 1 ✓ 0.095 𝛿-sat 14.557 ind 153

lap_acc_00_alt1 2 0.999 2 ✓ 0.142 𝛿-sat 25.894 ind 182

lap_acc_01_alt1 2 0.999 3 ✓ 0.246 𝛿-sat 35.266 ind 143

lap_acc_02_alt1 2 0.999 4 ✓ 0.377 𝛿-sat 45.006 ind 119

high_inc_gd_01 2 40.0 2 × 0.004 unsat 4.122 ind 1030

high_inc_gd_unfair_01 2 40.0 2 × 0.004 unsat 4.104 ind 1026

eth_colrank_fair_00 0 4 ✓ 0.020 unsat 0.767 ff 38

eth_colrank_unfair_00 0 4 ✓ 0.025 unsat 0.766 ff 31

vol_cmp_00 1 0.1 2 ✓ 0.005 unsat 0.951 ff 190

vol_cmp_01 1 0.1 2 ✓ 0.007 𝛿-sat 0.943 tt 135

vol_cmp_02 1 0.1 2 ✓ 0.005 unsat 1.712 ff 342

vol_cmp_03 1 0.1 2 ✓ 0.007 𝛿-sat 1.710 tt 244

vol_cmp_04 1 0.1 2 ✓ 0.004 unsat 1.571 ff 393

vol_cmp_05 1 0.1 2 ✓ 0.008 𝛿-sat 1.553 tt 194

vol_cmp_06 1 0.1 2 ✓ 0.045 𝛿-sat 2.164 tt 48

vol_cmp_07 1 0.1 2 ✓ 0.021 𝛿-sat 2.163 tt 103

vol_cmp_08 1 0.1 2 ✓ 0.005 unsat 2.021 ind 404

vol_cmp_09 1 0.1 2 ✓ 0.007 𝛿-sat 2.121 ind 303

vol_cmp_10 1 0.1 2 ✓ 0.004 unsat 1.302 ff 326

vol_cmp_11 1 0.1 2 ✓ 0.008 𝛿-sat 1.263 tt 158

gauss_mech_00 1 0.9 2 × 53.082 unsat 2.571 ff <1

eth_colrank_fair_01 2 10 4 ✓ 233.267 unsat 159.626 ind <1

eth_colrank_unfair_01 2 10 4 ✓ 15.450 unsat 156.861 ind 10

svt_gauss_00 1 0.4 2 ✓ 3.972 unsat 1.445 ff <1

svt_gauss_sat_00 1 0.4 2 ✓ 274.049 𝛿-sat 1.458 tt <1

gauss_forall_00 1 0.5 1 ✓ 255.687 𝛿-sat 126.654 ind <1

vol_cmp_00_forall 1 1 2 ✓ 0.006 𝛿-sat 1.081 a← 43

34
180

vol_cmp_02_forall 1 1 2 ✓ 0.005 𝛿-sat 1.509 ind 302

vol_cmp_04_forall 1 1 2 ✓ 0.006 𝛿-sat 1.373 ind 229

vol_cmp_06_forall 1 1 2 ✓ 0.026 𝛿-sat 1.586 ind 61

vol_cmp_08_forall 1 1 2 ✓ 0.006 𝛿-sat 1.153 ind 192

vol_cmp_10_forall 1 1 2 ✓ 0.006 𝛿-sat 1.190 ind 198

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

105:22 Cody Rivera, Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

Table 4. Experimental results comparing the time taken by FairSquare to check programs for fairness versus
the time taken by

∫
dReal to solve the corresponding fairness/unfairness query. For queries given to

∫
dReal,

on fair programs, unsatisfiability implies fairness, and on unfair programs, unsatisfiability implies unfairness.

Benchmarks FairSquare

∫
dReal

Example time result time result

high_inc_gd_00 1.014 fair 0.004 unsat

high_inc_gd_unfair_00 1.031 unfair 0.004 unsat

eth_colrank_fair_00 5.189 fair 0.02 unsat

eth_colrank_unfair_00 2.51 unfair 0.025 unsat

• On the one example where the output from

∫
dReal and Mathematica

®

does not correspond

(lap_mech_00),

∫
dReal outputs “𝛿-sat” but Mathematica

®

outputs “false”. In this example,

we check whether one expression is strictly less than the other. These two expressions are

actually equal, but

∫
dReal is unable to conclude the falsehood of this formula. Nevertheless,

the answer returned by

∫
dReal is sound.

• The performance of

∫
dReal on single and double integral examples is significantly faster

compared to Mathematica
®

in most examples. Also, for all these examples,

∫
dReal can give

an answer, while Mathematica
®

sometimes cannot resolve the formula to a boolean value.

• In the case of triple integrals, we were able to solve some examples by setting the integral

interval small, i.e., from -4 to 4, and using a smaller range of 𝜖 . However, Mathematica
®

outperformed

∫
dReal in all triple integral examples.

• In the case of quantifier alternation, our tool successfully solves examples featuring nested in-

tegrals and functions such as exponentiation and trigonometric sine. Conversely,Mathematica
®

demonstrates limited success, solving only one example while requiring a significantly longer

computation time for that example compared to our tool.

7.3 Scaling Behavior Analysis
We additionally evaluate

∫
dReal’s scalability by executing families of queries in which a particular

attribute is varied. We evaluate scalability by varying integral width, interval width of variables,

number of variables, and number of integral subterms.

To study scalability of

∫
dReal with respect to integral width and interval width of variables, we

turn to the query for verifying privacy of the Sparse Vector Technique (SVT) with triple integrals

and double integrals, as discussed in Case Study 6.4. We first examine scalability with respect to

integral width: the largest integral in these examples ranges from −𝑘 to 𝑘 . With triple integrals, our

tool could not handle integrals with limits greater than 𝑘 = 4 without timing out after 10 minutes.

However, by redefining the query to an equivalent one with double integrals, we were able to

handle integrals with limits up to 𝑘 = 48, resulting in both better scalability and performance. To

examine scalability with regard to the interval width of the existentially-quantified 𝜖 , note that

in the case of double integrals, as the width increases, time increases quadratically, and in triple

integrals, time increases more rapidly. These results are illustrated by Figure 4.

To examine how

∫
dReal scales with respect to the number of variables, we construct the following

family of queries𝜓1(𝑛), in which the number of existentially-quantified variables is parameterized

by 𝑛:

𝜓1(𝑛) = ∃𝑑1 ∈ [0, 1], . . . , 𝑑𝑛 ∈ [0, 1],¬𝜙(𝑛,𝑑1, . . . , 𝑑𝑛),

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

Checking 𝛿-Satisfiability of Reals with Integrals 105:23

(a) svt_gauss_00 (b) svt_gauss_prd_00

Fig. 4. Figure 4a and 4b depict the scaling behavior and performance comparison of svt_gauss_00 and
svt_gauss_prd_00, varying the width of the integral 𝑘 , and the width of the interval for the existentially
quantified variable 𝜖 .

where 𝜙 is defined as follows, with 𝜖 = 𝑘 = 1:

𝜙(𝑛,𝑑1, . . . , 𝑑𝑛) =

1

2𝜋

√︃
4

𝜖2

3√
2𝜋

(∫𝑘

−𝑘
𝑒
−
(

(𝑦−1)(𝑦−1)

8𝜖2

)
𝑑𝑦 +

𝑛∑︁
𝑖=1

(∫𝑑𝑖

−𝑘
𝑒
−
(

(𝑦−0)(𝑦−0)𝜖2

8

)
𝑑𝑦

))
≤ 1

4

.

We run𝜓1(𝑛) for 𝑛 ∈ 1, . . . , 99, with performance results shown in Figure 5. Note that for all 𝑛 ≤ 16,∫
dReal returns unsat, while for all 𝑛 ≥ 17,

∫
dReal returns 𝛿-sat — the intuition behind this being

that if one adds enough integrals on the left-hand side, it will be bigger than any constant on the

right-hand side. This becomes relevant for performance since for this family of queries, as the

number of existentially-quantified variables increases, the performance increases linearly except

for the transition between unsat and 𝛿-sat, where run time peaks. For the sake of illustrating the

performance here, we present the results both in full, in Figure 5a, and by not displaying peak

values, in Figure 5b.

(a) Performance vs. Num. Variables (b) Performance vs. Num. Variables (no peak)

Fig. 5. Figure 5a and 5b depict the performance behavior of𝜓1(𝑛) as the number of existentially quantified
variables 𝑛 is varied from 1 to 99. In 5b, the maximum value of the y-axis is 0.14 seconds to show how
performance scales without the impact of the peak around 𝑛 = 19.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

105:24 Cody Rivera, Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

To examine how

∫
dReal scales with respect to the number of integral subterms, we construct

the following two families of queries𝜓2 and𝜓3, in which the number of existentially-quantified

variables is parameterized by 𝑛 (note that𝑚 = 2, 3). 𝜓2 represents a sum of 𝑛 integrals, while 𝜓3

represents a product of 𝑛 integrals nested inside an outer integral:

𝜓𝑚(𝑛) = ∃𝜖 ∈ [0.5, 0.6],¬𝜙𝑚(𝑛, 𝜖),

where 𝜙2 is defined as follows, with 𝑘 = 1:

𝜙2(𝑛, 𝜖) =

1

2𝜋

√︃
4

𝜖2

3√
2𝜋

(∫𝑘

−𝑘
𝑒
−
(

(𝑦−1)(𝑦−1)

8𝜖2

)
𝑑𝑦 +

𝑛∑︁
𝑖=2

(∫𝑘

−𝑘
𝑒
−
(

(𝑦−0)(𝑦−0)𝑖𝜖2

8

)
𝑑𝑦

))
≤ 1

100

,

and 𝜙3 is defined as follows, with 𝑘 = 1:

𝜙3(𝑛, 𝜖) =

1

2𝜋

√︃
4

𝜖2

3√
2𝜋

(∫𝑘

−𝑘

(∫𝑘

−𝑘
𝑒
−
(

(𝑦−1)(𝑦−1)

8𝜖2

)
𝑑𝑦

) (
𝑛∏
𝑖=2

∫𝑧

−𝑘
𝑒
−
(

(𝑦−0)(𝑦−0)𝜖2

8

)
𝑑𝑦

) (
𝑒
−
(
𝑧2𝜖2

8

))
𝑑𝑧

)
≤ 1

100

,

We run𝜓2(𝑛) and𝜓3(𝑛) for 𝑛 ∈ 1, . . . , 99, with performance results shown in Figure 6. For𝜓2, we

have that for all 𝑛 ≤ 3,

∫
dReal returns unsat, while for all 𝑛 ≥ 4,

∫
dReal returns 𝛿-sat, and for𝜓3,

we have that for all 𝑛 ≤ 5,

∫
dReal returns unsat, while for all 𝑛 ≥ 6,

∫
dReal returns 𝛿-sat. One can

observe that performance increases roughly linearly with the number of integral terms — one also

observes that this performance is not spoiled by one layer of nested integration.

(a) Performance of𝜓2 vs. Num. Integrals (b) Performance of𝜓3 vs. Num. Integrals

Fig. 6. Figure 6a and 6b depict the performance behavior of 𝜓2(𝑛) and 𝜓3(𝑛) as 𝑛, the number of integral
expressions and inner integral expressions respectively, is varied from 1 to 99.

8 Conclusions and Future Work
The framework of 𝛿-decision procedures, with its support for a wide variety of non-linear real

functions, shows much promise in solving a range of verification and synthesis problems. To this

end, we extend an existing tool, dReal, with support for integrals to create

∫
dReal. We believe that

the value in adding support for terms with integration is its application in a range of examples, some

of which are described in this paper. We evaluate

∫
dReal on a variety of queries taken from domains

including checking the fairness of machine learning models, and the privacy and the accuracy of

differential privacy mechanisms. The performance of

∫
dReal on many of these benchmarks over

symbolic tools such as Mathematica
®

shows great promise for this approach’s use on a broader

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

Checking 𝛿-Satisfiability of Reals with Integrals 105:25

range of verification and synthesis problems. As part of future work, we plan to extend

∫
dReal

with additional operations such as volume integration and partial derivatives.

Data Availability Statement
There is a publicly available artifact providing both the implementation of

∫
dReal as well as our

input files [24]. It also provides the equivalent Wolfram Mathematica implementations of the

relevant files, as well as FairSquare programs corresponding to the relevant fairness queries. An

earlier version was submitted for artifact evaluation [23].

Acknowledgements
This work was partially supported by the National Science Foundation: Bishnu Bhusal and Rohit

Chadha were partially supported by grant CCF 1900924, A. Prasad Sistla was partially supported

by grant CCF 1901069, and Mahesh Viswanathan was partially supported by grants CCF 1901069

and CCF 2007428.

References
[1] Accessed 2023. DReal4. https://github.com/dreal/dreal4.

[2] Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori. 2017. FairSquare: Probabilistic Verification of

Program Fairness. Proc. ACM Program. Lang. 1, OOPSLA, Article 80 (oct 2017), 30 pages. https://doi.org/10.1145/3133904
[3] Gilles Barthe, Rohit Chadha, Paul Krogmeier, A Prasad Sistla, and Mahesh Viswanathan. 2021. Deciding accuracy

of differential privacy schemes. Proceedings of the ACM on Programming Languages 5, POPL (2021), 1–30. https:

//doi.org/10.1145/3434289

[4] Fabian Bauer-Marquart, Stefan Leue, and Christian Schilling. 2023. symQV: Automated Symbolic Verification of

Quantum Programs. In Formal Methods, Marsha Chechik, Joost-Pieter Katoen, and Martin Leucker (Eds.). Springer

International Publishing, Cham, 181–198. https://doi.org/10.1007/978-3-031-27481-7_12

[5] Frédéric Benhamou and Laurent Granvilliers. 2006. Chapter 16 - Continuous and Interval Constraints. In Handbook of
Constraint Programming, Francesca Rossi, Peter van Beek, and Toby Walsh (Eds.). Foundations of Artificial Intelligence,

Vol. 2. Elsevier, 571–603. https://doi.org/10.1016/S1574-6526(06)80020-9

[6] Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, and Bishnu Bhusal. 2023. Deciding Differential Privacy of Online

Algorithms with Multiple Variables (CCS ’23). Association for Computing Machinery, New York, NY, USA, 1761–1775.

https://doi.org/10.1145/3576915.3623170

[7] Cynthia Dwork. 2006. Differential Privacy. In Automata, Languages and Programming, Michele Bugliesi, Bart Preneel,

Vladimiro Sassone, and Ingo Wegener (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–12. https://doi.org/10.

1007/11787006_1

[8] Cynthia Dwork,Moni Naor, Omer Reingold, GuyNRothblum, and Salil Vadhan. 2009. On the complexity of differentially

private data release: efficient algorithms and hardness results. In Proceedings of the forty-first annual ACM symposium
on Theory of computing. 381–390. https://doi.org/10.1145/1536414.1536467

[9] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differential Privacy. Found. Trends Theor.
Comput. Sci. 9, 3–4 (aug 2014), 211–407. https://doi.org/10.1561/0400000042

[10] A. Eggers, N. Ramdani, N. Nedialkov, and M. Fränzle. 2011. Improving SAT Modulo ODE for Hybrid Systems Analysis

by Combining Different Enclosure Methods. In Proceedings of the International Conference on Software Engineering and
Formal Methods. 172–187. https://doi.org/10.1007/978-3-642-24690-6_13

[11] Sicun Gao, Jeremy Avigad, and Edmund M. Clarke. 2012. 𝛿-Complete Decision Procedures for Satisfiability over the

Reals. In Automated Reasoning, Bernhard Gramlich, Dale Miller, and Uli Sattler (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 286–300. https://doi.org/10.1007/978-3-642-31365-3_23

[12] Sicun Gao, Soonho Kong, and Edmund M. Clarke. 2013. dReal: An SMT Solver for Nonlinear Theories over the Reals. In

Automated Deduction – CADE-24, Maria Paola Bonacina (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 208–214.

https://doi.org/10.1007/978-3-642-38574-2_14

[13] Sicun Gao, Soonho Kong, and Edmund M. Clarke. 2013. Satisfiability modulo ODEs. In 2013 Formal Methods in
Computer-Aided Design. 105–112. https://doi.org/10.1109/FMCAD.2013.6679398

[14] Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Exact Symbolic Inference for Probabilistic Programs. In

Computer Aided Verification, Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International Publishing, Cham,

62–83. https://doi.org/10.1007/978-3-319-41528-4_4

[15] Ibex Team. Accessed 2023. Ibex Library. https://ibex-team.github.io/ibex-lib/.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

https://github.com/dreal/dreal4
https://doi.org/10.1145/3133904
https://doi.org/10.1145/3434289
https://doi.org/10.1145/3434289
https://doi.org/10.1007/978-3-031-27481-7_12
https://doi.org/10.1016/S1574-6526(06)80020-9
https://doi.org/10.1145/3576915.3623170
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11787006_1
https://doi.org/10.1145/1536414.1536467
https://doi.org/10.1561/0400000042
https://doi.org/10.1007/978-3-642-24690-6_13
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1109/FMCAD.2013.6679398
https://doi.org/10.1007/978-3-319-41528-4_4
https://ibex-team.github.io/ibex-lib/

105:26 Cody Rivera, Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

[16] Fredrik Johansson. 2014. Arb: A C Library for Ball Arithmetic. ACM Commun. Comput. Algebra 47, 3/4 (jan 2014),

166–169. https://doi.org/10.1145/2576802.2576828

[17] Fredrik Johansson. 2017. New rigorous numerical integration in Arb. https://fredrikj.net/blog/2017/11/new-rigorous-

numerical-integration-in-arb/.

[18] K.-I. Ko. 1991. Complexity Theory of Real Functions. Birkhauser. https://doi.org/10.1007/978-1-4684-6802-1

[19] Soonho Kong, Sicun Gao, Wei Chen, and Edmund M. Clarke. 2015. dReach: 𝛿-Reachability Analysis for Hybrid Systems.

In Tools and Algorithms for the Construction and Analysis of Systems - 21st International Conference, TACAS 2015, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings. 200–205. https://doi.org/10.1007/978-3-662-46681-0_15

[20] Soonho Kong, Armando Solar-Lezama, and Sicun Gao. 2018. Delta-Decision Procedures for Exists-Forall Problems

over the Reals. In Computer Aided Verification, Hana Chockler and Georg Weissenbacher (Eds.). Springer International

Publishing, Cham, 219–235. https://doi.org/10.1007/978-3-319-96142-2_15

[21] Min Lyu, Dong Su, and Ninghui Li. 2017. Understanding the Sparse Vector Technique for Differential Privacy. Proc.
VLDB Endow. 10, 6 (feb 2017), 637–648. https://doi.org/10.14778/3055330.3055331

[22] Stefan Ratschan and Zhikun She. 2007. Safety Verification of Hybrid Systems by Constraint Propagation Based

Abstraction Refinement. ACM Transactions in Embedded Computing Systems 6, 1 (2007). https://doi.org/10.1007/978-3-

540-31954-2_37

[23] Cody Rivera, Bishnu Bhusal, Rohit Chadha, Aravinda Prasad Sistla, and Mahesh Viswanathan. 2025. Artifact for Paper
Submission "Checking 𝛿-Satisfiability of Reals with Integrals (v1)". https://doi.org/10.5281/zenodo.14593603

[24] Cody Rivera, Bishnu Bhusal, Rohit Chadha, Aravinda Prasad Sistla, and Mahesh Viswanathan. 2025. Artifact for Paper
Submission "Checking 𝛿-Satisfiability of Reals with Integrals (v2)". https://doi.org/10.5281/zenodo.14948095

[25] Halsey L. Royden. 1988. Real analysis (3rd ed.). Macmillan, New York.

[26] Danny De Schreye. 1999. Revising hull and box consistency. In Logic Programming: Proceedings of the 1999 International
Conference on Logic Programming. 230–244. https://doi.org/10.7551/mitpress/4304.003.0024

[27] Lloyd N. Trefethen. 2008. Is Gauss Quadrature Better than Clenshaw–Curtis? SIAM Rev. 50, 1 (2008), 67–87. https:

//doi.org/10.1137/060659831

[28] Qinsi Wang, Paolo Zuliani, Soonho Kong, Sicun Gao, and Edmund M. Clarke. 2015. SReach: A Probabilistic Bounded

Delta-Reachability Analyzer for Stochastic Hybrid Systems. In Computational Methods in Systems Biology, Olivier
Roux and Jérémie Bourdon (Eds.). Springer International Publishing, Cham, 15–27. https://doi.org/10.1007/978-3-319-

23401-4_3

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

https://doi.org/10.1145/2576802.2576828
https://fredrikj.net/blog/2017/11/new-rigorous-numerical-integration-in-arb/
https://fredrikj.net/blog/2017/11/new-rigorous-numerical-integration-in-arb/
https://doi.org/10.1007/978-1-4684-6802-1
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-319-96142-2_15
https://doi.org/10.14778/3055330.3055331
https://doi.org/10.1007/978-3-540-31954-2_37
https://doi.org/10.1007/978-3-540-31954-2_37
https://doi.org/10.5281/zenodo.14593603
https://doi.org/10.5281/zenodo.14948095
https://doi.org/10.7551/mitpress/4304.003.0024
https://doi.org/10.1137/060659831
https://doi.org/10.1137/060659831
https://doi.org/10.1007/978-3-319-23401-4_3
https://doi.org/10.1007/978-3-319-23401-4_3

Checking 𝛿-Satisfiability of Reals with Integrals 105:27

A Proof of Theorem 3
Proof. Since the set of 𝑛-dimensional boxes is finite, and a well-defined Prune always returns a

smaller box (W1), the loop in lines 10–11 always terminates. We need to demonstrate that the loop

in lines 8–17 always terminates.

Consider the subsets of R𝑛 that can be formed using the union of a collection of 𝑛-dimensional

boxes in BF. Formally,

H𝑛
= {∪𝑖∈ 𝐽 𝐵𝑖 | {𝐵𝑖 | 𝑖 ∈ 𝐽 } ⊆ IF𝑛}.

Clearly,H𝑛
is finite. A sequence of sets 𝐶1 ⊇ 𝐶2 ⊇ · · · ⊇ 𝐶𝑛 ⊇ · · · is said to be eventually strictly

decreasing if that for each 𝑖,

(1) 𝐶𝑖 ∈ H𝑛, and

(2) if 𝐶𝑖 ̸= ∅ then there exists 𝑘𝑖 > 𝑖 . 𝐶𝑖 ⊋ 𝐶𝑘𝑖 .

It is easy to see that an eventually strictly decreasing sequence is either finite or there is an ℓ such

that 𝐶 𝑗 = ∅ for all 𝑗 ≥ ℓ .

Let 𝑆𝑖 denote the stack at the beginning of the 𝑖 iteration of the loop in lines 8–17, let 𝐶𝑖 denote

the set formed by the union of all the boxes in 𝑆𝑖 , and let 𝑆𝑖 .𝑡𝑜𝑝 denotes the topmost box in 𝑆𝑖 .

From the Branch operator and well-definedness of Prune, it is easily seen that𝐶𝑖 ⊇ 𝐶𝑖+1 for each

𝑖 . Furthermore, one of the following must be true for each 𝑖:

(1) 𝑆𝑖 .𝑡𝑜𝑝 is removed in iteration 𝑖 from the stack, and no element is pushed onto 𝑆𝑖 . In this case,

it is easy to see that 𝐶𝑖 ⊋ 𝐶𝑖+1 .

(2) 𝑆𝑖 .𝑡𝑜𝑝 is removed from the stack in iteration 𝑖 and replaced by one or two intervals such

𝑆𝑖 .𝑡𝑜𝑝 ⊋ 𝑆𝑖+1.𝑡𝑜𝑝.

(3) 𝑆𝑖 .𝑡𝑜𝑝 is a box 𝐵 = 𝐼1× . . .×𝐼𝑛 such that for each𝑘 , 𝐼𝑘 = [𝑎𝑘 , 𝑏𝑘] with𝑏𝑘−𝑎𝑘 ≤ 2
−modulus(F, 𝛿

4
,𝐵0) .

In this case, observe that well-definedness of Prune (W1) means that for each 𝑗 , either

Prune(𝐵, 𝑓 #

𝑗) = ∅ or Prune(𝐵, 𝑓 #

𝑗) = 𝐵. Thus, either 𝑆𝑖 .𝑡𝑜𝑝 will be removed (in which case we

get 𝐶𝑖+1 ⊋ 𝐶𝑖) or Prune(𝐵, 𝑓 #

𝑗) = 𝐵 for each 𝑗 .

Assume that Prune(𝐵, 𝑓 #

𝑗) = 𝐵 for each 𝑗 . By well-definedness of Prune (W2), this implies

that 0 ∈ 𝑓 #

𝑗 (𝐵) for each 𝑗 . 𝛿-proximality implies that for each 𝑗 , there exists an x𝑗 ∈ 𝐵 such

that |0 − 𝑓𝑗 (x𝑗)| < 𝛿
3
, ie, |𝑓𝑗 (x𝑗)| < 𝛿

3
. We also have by 𝛿-proximality that for each 𝑧 ∈ 𝑓 #

𝑗 (𝐵)

there is a x𝑗,𝑧 ∈ 𝐵 such that |𝑧 − 𝑓 (x𝑗,𝑧))| < 𝛿
3
. Thus, we get by the triangle inequality, for

each 𝑧 ∈ 𝑓 #

𝑗 (𝐵),

|𝑧 | < |𝑧 − 𝑓 (x𝑗,𝑧)| + |𝑓 (x𝑗,𝑧) − 𝑓𝑗 (x𝑗)| + |𝑓𝑗 (x𝑗)|

<
2𝛿

3

+ |𝑓 (x𝑗,𝑧) − 𝑓𝑗 (x𝑗)|

From the fact that 𝑏𝑘 −𝑎𝑘 < 2
−modulus(F, 𝛿

4
,𝐵0), we get that |𝑓 (x𝑗,𝑧)− 𝑓𝑗 (x𝑗)| < 𝛿

4
. Thus for each

𝑧 ∈ 𝑓 #

𝑗 (𝐵), |𝑧 | ≤ 11𝛿
12

. Thus, |𝑓 #
(𝐵 𝑗)| < 𝛿 and in this case, the algorithm must return sat.

Since the number of 𝑛-dimensional boxes is finite, it is easy to see that the above observations

imply that the sequence 𝐶1 ⊇ 𝐶2 ⊇ · · · is eventually strictly decreasing. Thus, there is an ℓ such

that either 𝑆ℓ is empty or the loop terminates in iteration ℓ returning sat. In the former case, the

algorithm terminates and returns unsat. □

B Proof of Theorem 5
Proof. The proof proceeds by induction on the term language in Equation 13. As the composition

of computable functions is computable, and the addition, multiplication, subtraction, exponentiation,

division, trigonometric functions, and logarithms are computable, it suffices to show that for any

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

105:28 Cody Rivera, Bishnu Bhusal, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

computable function 𝑓 : R𝑚+1 → 𝑅, and computable numbers 𝑟ℓ , 𝑟𝑢, the function 𝑔 : R𝑚+2 → R
defined as

𝑔(𝑟ℓ , 𝑟𝑢, 𝑟1, . . . , 𝑟𝑚) =

∫𝑟𝑢

𝑟ℓ

𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧

is a computable function.

In order to show this, we outline how𝑀
⟨𝑟ℓ ⟩,⟨𝑟𝑢 ⟩,⟨𝑟1 ⟩,...,⟨𝑟𝑚 ⟩
𝑔 , the function oracle Turing Machine

for 𝑔 with oracles for⟨𝑟ℓ⟩, ⟨𝑟𝑢⟩, ⟨𝑟1⟩, . . . , ⟨𝑟𝑚⟩ can be constructed. For brevity, we shall use 𝑀𝑔 to

denote𝑀
⟨𝑟ℓ ⟩,⟨𝑟𝑢 ⟩,⟨𝑟1 ⟩,...,⟨𝑟𝑚 ⟩
𝑔 .

On input 𝑖 ,𝑀𝑔 is supposed to output a value 𝑣 such that |𝑔(𝑟ℓ , 𝑟𝑢, 𝑟1, . . . , 𝑟𝑚) − 𝑣 | ≤ 1

2
𝑖 When𝑀𝑔

starts on input 𝑖 , it computes using its oracles, closed intervals 𝐼0, 𝐼1, . . . , 𝐼𝑚 such that 𝑟ℓ , 𝑟𝑢 ∈ 𝐼0
and 𝑟𝑘 ⊆ 𝐼𝑘 for 1 ≤ 𝑘 ≤ 𝑚. 𝑀𝑔 also computes a bound 𝐿 ≥ 1 such that |𝑟𝑢 − 𝑟ℓ | ≤ 𝐿. Further, by

simulating 𝑓 , it then computes a bound 𝐵 ≥ 1 such that |𝑓 (𝑟𝑢, 𝑟1, . . . 𝑟𝑚)|, |𝑓 (𝑟ℓ , 𝑟1, . . . 𝑟𝑚)|≤ 𝐵.

Let 𝐶 = 𝐼0 × 𝐼1 × · · · × 𝐼𝑚 . Observe that 𝐶 is compact. Since 𝑓 is computable,𝑀𝑔 then computes a

𝑗 such |𝑓 (𝑥) − 𝑓 (𝑦)| ≤ 1

2
𝑖+2𝐿

for each 𝑥,𝑦 ∈ 𝐶 such that | |𝑥 − 𝑦 | |≤ 1

2
𝑗 . Without loss of generality, we

can assume 𝑗 ≥ 𝑖 + 3.

𝑀𝑔 computes, using the oracles of 𝑟ℓ and 𝑟𝑢 , intervals [𝑎0, 𝑎1] and [𝑏0, 𝑏1] such that 𝑟ℓ ∈ [𝑎0, 𝑎1], 𝑟𝑢 ∈
[𝑏0, 𝑏1], 𝑎1 − 𝑎0 ≤ 1

2
𝑗𝐵

and 𝑏1 − 𝑏0 ≤ 1

2
𝑗𝐵
. We consider three mutually exclusive and exhaustive

cases:

(1) Case 1: (𝑎1 < 𝑏0). Observe that we have∫𝑟𝑢

𝑟ℓ

𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧 =

∫𝑎1

𝑟ℓ

𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧 +

∫𝑏0

𝑎1

𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧 +

∫𝑟𝑢

𝑏0

𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧.

Now, observe that by construction of 𝑗, |𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚) − 𝑓 (𝑟ℓ , 𝑟1, . . . , 𝑟𝑚)| ≤ 1

2
𝑖+2𝐿

for each

𝑧 ∈ [𝑟ℓ , 𝑎1]. Thus, |𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)| ≤ |𝑓 (𝑟ℓ , 𝑟1, . . . , 𝑟𝑚)| + 1

2
𝑖+2𝐿
≤ 𝐵 +

1

2
𝑖+2𝐿
≤ 2𝐵. Hence, we

have that

|
∫𝑎1

𝑟ℓ

𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧 | ≤ 2𝐵(𝑎1 − 𝑟ℓ) ≤ 2𝐵
1

2
𝑗𝐵
≤ 2

2
𝑗
≤ 1

2
𝑖+2

where the last inequality follows from the assumption that 𝑗 ≥ 𝑖 + 3. Similarly,

|
∫𝑟𝑢

𝑏0

𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧 | ≤ 1

2
𝑖+2

.

Thus, if𝑀𝑔 can compute

∫𝑏0

𝑎1

𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧 up to the precision of
1

2
𝑖+1
, then that value is the

value of𝑔(𝑟𝑢, 𝑟ℓ , 𝑟1, . . . , 𝑟𝑚) up to a precision of
1

2
𝑖 .Now, in order to compute

∫𝑏0

𝑎1

𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧,

𝑀𝑔 constructs rational numbers 𝑎1 = 𝑐0 < 𝑐1 < · · · < 𝑐𝑛 = 𝑏1 such that 𝑐𝑘+1 − 𝑐𝑘 < 1

2
𝑗 for

each 0 ≤ 𝑘 < 𝑛. We have by construction of 𝑗 , for each 0 ≤ 𝑘 < 𝑛 and each 𝑧 ∈ [𝑐𝑘 , 𝑐𝑘+1]

𝑓 (𝑐𝑘 , 𝑟1, . . . , 𝑟𝑚) − 1

2
𝑖+2𝐿
≤ 𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚) ≤ 𝑓 (𝑐𝑘 , 𝑟1, . . . , 𝑟𝑚) +

1

2
𝑖+2

.

From this, it is easy to see that

|
∫𝑏0

𝑎1

𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧 −
𝑛−1∑︁
𝑘=0

𝑓 (𝑐𝑘 , 𝑟1, . . . , 𝑟𝑚)(𝑐𝑘+1 − 𝑐𝑘)| ≤ 𝑏0 − 𝑎1

2
𝑖+2𝐿

≤ 1

2
𝑖+2𝐿

where the last equality follows from the fact that |𝑟𝑢 − 𝑟ℓ | ≤ 𝐿.

Now, thanks to the computability of 𝑓 ,𝑀𝑔 computes the Reimann sum

𝑛−1∑︁
𝑘=0

𝑓 (𝑐𝑘 , 𝑟1, . . . , 𝑟𝑚)(𝑐𝑘+1 − 𝑐𝑘)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

Checking 𝛿-Satisfiability of Reals with Integrals 105:29

up to a precision of
1

2
𝑖+2
. If 𝑣 is the sum computed, it can be easily seen that

|
∫𝑏0

𝑎1

𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧 − 𝑣 | ≤ 1

2
𝑖+1

.

Thus, 𝑣 is the required value and𝑀𝑔 outputs 𝑣 .

(2) Case 2: (𝑏1 ≤ 𝑎0). In this case 𝑀𝑔 computes

∫𝑎0

𝑏1

𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧 up to a precision of
1

2
𝑖+1

similar to the computation of

∫𝑏0

𝑎1

𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧 in the above case. If 𝑣 is the value computed,

𝑀𝑔 outputs −𝑣 . That the output value is the desired value can be seen via an argument similar

to the first Case.

(3) Case 3: ((𝑎0, 𝑎1)∩ (𝑏0, 𝑏1) ̸= ∅). Note that this implies that |𝑟𝑢 − 𝑟ℓ | ≤ 2

2
𝑗𝐵
. Assume that 𝑟ℓ ≤ 𝑟𝑢 .

The case when 𝑟𝑢 ≤ 𝑟ℓ is similar. Now, for any 𝑧 ∈ [𝑟ℓ , 𝑟𝑢], we have either |𝑓 (𝑧, 𝑟1, . . . 𝑟𝑘) −
𝑓 (𝑟ℓ , 𝑟1, . . . 𝑟𝑘)| ≤ 1

2
𝑖+2𝐿

or |𝑓 (𝑧, 𝑟1, . . . 𝑟𝑘) − 𝑓 (𝑟𝑢, 𝑟1, . . . 𝑟𝑘)| ≤ 1

2
𝑖+2𝐿

. Thus, for any 𝑧 ∈ [𝑟ℓ , 𝑟𝑢],

we have that |𝑓 (𝑧, 𝑟1, . . . 𝑟𝑘)| ≤ 2𝐵. Thus,

|
∫𝑟𝑢

𝑟ℓ

𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧 | ≤ 2𝐵(𝑟𝑢 − 𝑟ℓ) ≤ 2𝐵
2

2
𝑗𝐵
≤ 1

2
𝑖+1

.

Thus, 0 is an approximation of

∫𝑟𝑢
𝑟ℓ
𝑓 (𝑧, 𝑟1, . . . , 𝑟𝑚)𝑑𝑧 up to a precision of 1

2
𝑖+1

and𝑀𝑔 can output

0. □

Received 2024-10-16; accepted 2025-02-18

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 105. Publication date: April 2025.

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Outline of the Paper
	1.3 Related Work

	2 Motivating Examples
	2.1 Verification of Fairness Properties
	2.2 Synthesis of Parameters for Accuracy of a Privacy Mechanism

	3 Background
	3.1 delta-Decision Procedures over the Real Numbers
	3.2 Interval Constraint Propagation (ICP) and dReal

	4 delta-Decision Procedures in the Presence of Integrals
	4.1 Syntax of Terms
	4.2 The Algorithm

	5 Implementation
	5.1 Interval Computations
	5.2 Tool Engineering

	6 Case Studies
	6.1 Income Fairness by Gender
	6.2 Privacy of the Gaussian Mechanism
	6.3 Privacy of the Laplace Mechanism
	6.4 Sparse Vector Technique with Two Inputs

	7 Experiments
	7.1 Benchmarks
	7.2 Discussion
	7.3 Scaling Behavior Analysis

	8 Conclusions and Future Work
	References
	A Proof of Theorem 3
	B Proof of Theorem 5

